o re

NTATION PAGE

AD-A265 420—

LT e f

! | LU RT DATE 3 REPORT TPt AN.Y DATES CovtilD i
: I TYEBAEY DISSERTATTION !
4. TITLE AND SUBTITLE] S FUNDING NutBEKS }
. One-Machine Generalized Precedence Constrained 1 ;

Scheduling i

6. AUTHOR,S)

§ Erick D. Wi Kum, Captain

: 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSILS) B PERICOAR G QHGANZIATION

: REPOET NUINMGER

|
AFIT Student Attending: Georgia Institute of Technology |

AFIT/C1/CIA-92-032D i

9. SPONSORNG MONITORING AGENCY NAME(S) AND ADDRES) ;10 SPOLSORNG MONITOIING :

; \FTT/CI D ! AGENCY REPORT NUMBLR i

Y 2 Vo & ! |

Wright-Patterson AFB OH 45433-6583 ELECTQE:‘S }
9

JUNOT |

i

11. SUPPLEMENTARY NOTES

n——

122, DISTRIEUUON F AVALABILITY STATEMENT

f
Approved for Public Release IAW 190-1 '
. Distribution Unlimited i
i MICHAEL M. BRICKER, SMSgt, USAF t
* Chief Administration

12b. DISTRIBUT:O! (ODE

! 13, ABSTRACT (Maximum 200 words)

R
[3
[..,‘ J

w

l‘ lw

94

93-125
LR

A -

96
I

\3MWt

14, SUBJECT TERMS 15 NUNMBER OF PAGES
120
i PRlE COOE
17, SECURITY CLASSIFICATION 1. SECURITY CLASSIFICETION 19, SECURITY CLASSIFIZATION 20, UIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE QF ABRSTRALCT :
NSN 7540.07 7703500 ca ~

One-machine Generalized Precedence Constrained Scheduling
Erick D. Wikum

Directed by Dr. Donna C. Llewellyn and Dr. George L. Nemhauser

We investigate one-machine scheduling problems subject to generalized prece-
dence constraints. A precedence constraint specifies that the first of a pair of jobs
must be completed before the second can begin. Under our generalized notion, not
only must the first job be completed Lefore the second can begin, but also, the dif-
ference between the start time of the second job and the completion time of the first
job must fall in a given pair-dependent interval. The left endpoint of this interval,
if greater than zero, specifies a minimum delay and the right endpoint, if finite,
specifies a maximum delay between the two jobs.

To our knowledge, this dissertation contains the first explicit identification of
generalized precedence constraints as we have defined them. As such, it represents
the first systematic treatment of generalized precedence constrained scheduling.

Our major emphases include drawing the line between easy and hard problems
with respect to precedence constraint type, precedence relation, and optimality cri-
terion and identifying suitable algorithms and finding effective heuristics for prob-
lems that are easy and hard, respectively. We consider minimizing makespan, total
completion time, or total weighted completion time subject to minimum delay prece-
dence ~onstraints, maximum delay precedence constraints, or a combination of the
two for various precedence relations. We show that most of these problems are NP-
hard for all but the simplest of precedence relations. We then present a miscellany of
results including polynomially solvable special cases, heuristics, and bounds for two

minimum makespan problems subject to minimum delay precedence constraints.

Accesion For

NTIS CRA& X
DTIC TAB r
Unannounced 3
Justiticabon .

\DTIC QUALITY INSPECTED 3 BY
Distribution |

. . Availability Codes
Bibliography Aval andTor

Dist Special

W..

(1] A.V. Aho, J.E. Hopcroft, J.D. Ullman (1974). The I)cs{qn and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA.

(2] R. Andreu, A. Corominas (1989). SUCCCES92: A DSS for Scheduling the
Olympic Games (sic). Interfaces 19, 1-12.

[3] Baker (1974). Introduction to Sequencing and Scheduling. Wiley, New York.

{4] R.E. Bellman 71957). Dynamic Programming. Princeton University Press,

Princeton, NJ.

[5] J. Carlier (1982). The one-machine sequencing problem. Eur. Journal of OR
11, 42-47.

[6] P. Chretienne (1989). A polynomial algorithm to optimally schedule tasks on a
virtual distributed system under tree-like precedence constraints. Eur. Journal

of OR 43, 225-230.

{7] R.W. Conway, W.L. Maxwell and L.W. Miller (1967). Theory of Scheduling.
Addison-Wesley, Reading, MA.

[8] R. Duke (1987). Combinatorial Methods lecture notes. Georgia Institute of
Technology (unpublished).

[9] L.F. Escudero (1988). An inexact algorithm for the scquential ordering problem.
Eur, Journal of OR 87, 236-253.

[10] M.R. Gar~y, D.S. Johnson (1979). Computers and Intractability: A Guide to

the Theory of NP-completeness. W.H. Freeman and Company, New York.

[11] M.R. Garey, D.S. Johnson, R. Sethi (1976). The Complexity of Flowshop and
Jobshop Scheduling. Math of OR 1, 117-129.

[12] P. Hansen (1980). Bicriterion path problems. G. Fandel, T. Gal (eds.) Lecture
Notes in Economics and Mathematical Systems 177. Springer, Heidelberg, 109-
127.

[13] J.A. Hoogeveen, S.L. van de Velde (1990). Polynomial-time algorithins {u
single-machine bicriteria scheduling. Report BS-R9008, Centre for Mathematics

and Computer Science, Amsterdam, The Netherlands.

[14] D.S. Johnson (1983). The NP-completeness column: an ongoing guide. Journal
of Algorithms 4, 189-203.

[15] R.M. Karp (1972). Reducibility among combinatorial problems. R.E. Miller,
J.W. Thatcher (eds.) Complezity of Computer Computations. Plenum Press,
New York, 85-103.

[16] E.L. Lawler (1978). Sequencing Problems with Series Parallel Precedence Con-

straints. Unpublished manuscript.

[17] E.L. Lawler (1979). Fast Approximation Algorithms for Knapsack Problems.
Math of OR 4, 339-356. ‘

(18] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (1989). Sequenc-
ing and Scheduling: Algorithms and Complezity. Report BS-R8909, Centre for

Mathematics and Computer Science, Amsterdam, The Netherlands.

[19] G.L. Nemhauser, L.A. Wolsey (1988). Integer and Combinatorial Optimizalion.
Wiley, New York.

[20] A.H.G. Rinnooy Kan (1976). Machine Scheduling Problems: Classification,
Complezity and Computations. Nijhoff, The Hague.

[21] R. Shapiro (1980). Scheduling Coupled Tasks. Naval Res. Logist. Quart. 27,
489-498.

{22] L.E. Shirland (1983). Computerized dressage scheduling. Interfaces 19, 75-81.

[23] W.E. Smith (1956). Various optimizers for single-stage production. Naval Res.
Logist. Quart. 3, 59-66.

[24] C.A. Tovey (1992). private communication.

{25] L.N. Van Wassenhove, L.F. Gelders (1980). Solving a bicriterion scheduling
problem. Fur. Journal of OR 4, 42-48.

One-machine Generalized Precedence Constrained Scheduling

by

Erick D. Wikum

Captain, USAF

1992

119 pages

Doctor of Philosophy in Industrial and Systems Engineering

Georgia Institute of Technology

ONE-MACHINE GENERALIZED
PRECEDENCE CONSTRAINED
SCHEDULING

A THESIS

Presented to
The Academic Faculty

by

Erick D. Wikum

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in Industrial and Systems Engineering

Georgia Institute of Technology
October 20, 1992

To the glory of my

Father in heaven

ACKNOWLEDGMENTS

[am indebted to my advisors, Dr. Donna Llewellyn and Dr. George Nemhauser,
for the large part they had in bringing this dissertation to fruition. Dr. Llewellyn’s
ability to understand immediately what had taken me a week or more to accomplish
and Dr. Nemhauser’s ability to explain difficult concepts in a sentence or two never
failed to amaze me. Dr. Llewellyn was always just a phone call away, with not only
technical assistance, but also words of encouragement. Dr. Nemhauser helped me
to develop and refine my ability to think critically, to ask the appropriate questions,
and to answer those questions.

I am most appreciative for the help and support given to me by my fellow
students at Georgia Tech, who could always sympathize with me since they were
experiencing the same difficulties as I was. I especially want to thank Tina Barr,
Arlin Johnson, Mike Cuie, and Ismaei de Farias.

For the past eight years, I received a weekly phone call from my parents. My
words cannot express the debt of gratitude I owe them for their love, friendship,
advice, and emotional support.

When my doctoral program grew burdensome, God intervened. He sent me a
helper, my wife, Elizabeth. I could never have completed my degree without the
love, caring, laughter, and companionship she gave to me. Both she and her parents
were especially helpful in the final stages of my program.

I am indebted most of all to my heavenly Father. He carried me when I was
down, forgave me when I did wrong, provided for my every need, and loved me so

much that he gave to me his only Son, my Lord and Savior, Jesus Christ!

iv

CONTENTS

page

ACKNOWLEDGMENTS iv
LIST OF TABLES viit
LIST OF FIGURES ix
SUMMARY xi
INTRODUCTION 1
1.1 Motivation. e 5
1.2 Related Literature 6
1.3 MajorEmphases 8
1 / min and max delays, k n;,...,n;-chains / Cpaz 10
2.1 Min DelaysProblems,, 10
2.1.1 1/ mindelays, k 1-chains / Cpaz - - 13
2.1.2 1/ min delays, k¥ 2,1,...,1-chains / Craz - - - - 15
213 1/ mindelays, k 2-chains / Cppgze . - . . - 18
2.1.4 1/ min delays, ¥ nq,1,...,1-chains / Cpiaz - 23

22 MaxDelaysProblems. 26
221 1/ maxdelays,k l-chains / Cpgz - . . . - 26
2.2.2 1/ maxdelays, k2,1,...,1chains / Crngz - 28
2.2.3 1/ max delays, k n;,1,...,1-chains / Crpgz . - 31

2.3 Min and Max Delays Problems 34
23.1 1/ minor max delays, k¥ 1-chains [Cprigy 35
23.2 1/ min and max delays, k l-chains / Craz 36

1 / min and max delays, k 1-chains / 3" C; or L w,C; 40

3.1 Min Delays Problems 40
3.1.1 1/ mindelays, k1-chains /TC; 40
3.1.2 1/ min delays, k 1-chains / Tw;C; 53

3.2 Max DelaysProblems., 57
3.21 1/ maxdelays,kl-chains /TC; 57

1 / min and max delays, 2 n,,n3-chains / C,,. 68

4.1 1/ mindelays,2ny,n3-chains / Copaz . - 68

4.2 1/ maxdelays,2ny,n-chains / Cmaz .+« v o v v v v i i 76

SPECIAL CASES, HEURISTICS, AND BOUNDS 81

5.1 1/ mindelays, k 2,1,...,1-chains /Cppaz 81

"~ 5.1.1 Relative Orderingof Jobs J3,...,Jk 81
5.1.2 Heuristic with Worst Case Performance Ratio2 82
5.1.3 Pseudo-polynomial Algorithm for Special Case with i; = --- =

=0 . 88
5.1.4 Heuristic with Worst Case Performance Ratio 2 + A for NP-
hard Special Case 92

52 1/ mindelays,2ny,nychains / Crmaz + + « -« v v v v v i e 98
5.2.1 No Schedule Has Makespan Greater Than Twice Optimal. . . 98
5.2.2 Polynomially Solvable Special Cases 99
5.2.3 Disjunctive Graph Representation 101
3524 LowerBounds. 105
5.2.5 Bicriterion Heuristic 108

vi

6 CONCLUSIONS

6.1 Summary

..........................

6.2 Suggestions for Future Research

BIBLIOGRAPHY

VITA

vii

113

120

LIST OF TABLES

Table page
1.1 Three-field a / B / v classification scheme. 4
1.2 Precedence constraint terminology. 4
2.1 Complexity classification of min delays, minimum makespan problems. 39
2.2 Complexity classification of max delays, minimum makespan problems. 39
2.3 Complexity classification of min and max delays, & 1-chains, mini-
mum makespan problems. oo o0 39
3.1 Possible valv=s for §y(o), &;(o), 6i(x), and bu(m). 51
3.2 Complexity classification of 1 / min and max delays, k 1-chains /
SCijorTwiCijproblems. 67
5.1 Release dates, processing requirements, and tails. 108

viii

LIST OF FIGURES

Figure page
1.1 The kny,...,ng-chains precedence graph. 3
2.1 ExampleGanttchart. 12
2.2 Instance of 1 / min delays, k 1-chains / Cpgze -+« « v v v o o o . L 13
2.3 Instance of 1 / min delays, k 2,1,...,1-chains / Cpgz < y. 17
2.4 Instance of 1 / min delays, k 2-chains / Crpez <y. - . - 19
2.5 Instance of 1 / min delays, k ny,1,...,1-chains / Coaz < y.. 24
2.6 Instance of 1 / max delays, k 1-chains / Crngze « -+ -« o o o o o L 27
2.7 Instance of 1 / max delays, k 2,1,...,1-chains / Cpaz < p(J). 29
2.8 Feasible schedule for constructed instance of 1 / max delays, ¥ 2,1,...,1-
chains / Coae SP(J). -+ o o o o 30
2.9 Instance of 1 / max delays, &k ny,1,...,1 -chains / Cpez < p(J). . .. 32
2.10 Feasibleschedule for constructed instance of 1 / max delays, & n;, 1,..., -
chains / Coaz SP(J). + o v o v it e 34
2.11 Optimal schedule for the 1 / min or max delays, k 1-chains / Cpar
problem. L e 36
3.1 Obtaining schedule @ from schedules. 43
3.2 Instance of 1 / min delays, k 1-chains / ¥C;. 48
3.3 Feasible schedule for constructed instance of 1 / min delays, k 1-
chains / Tw;C; <Y.. oL 55
3.4 Schedule with sum of processing times of jobs from {Ji,...,Jk-1}

completed after job Ji less than 3 ¥ eas8(j). 56

ix

3.5 Schedule with sum of processing times of jobs from {Ji,...,Ji_1}
completed after job Ji greater than ‘lizje as() o oo
3.6 Feasible schedule for constructed instance of 1 / max delays, k& 1-

chains / " C; <Y, . ..o oo

4.1 Strict ordering requirements imposed by 2 ny,ny-chains.
4.2 Bins into which the 2-jobs are placed.
4.3 Makespan contribution f;,t € {1,...,m}and z,=0.
4.4 Makespan contribution fi, t € {1,...,m} z, € {1,...,np — 5,1 }.

4.5 Makespan contribution fu,41,8n, =n2. Lo

4.6 Makespan contribution fu, 41, 8, € {0,1,...,02—1}.
4.7 Schedule defined by z;,...,24-1,and z,.
4.8 Schedule defined by z;,...,2n,,and 2547, -
5.1 Instance of 1 / min delays, k 2,1,...,1-chains / Crigze + « - -

5.2 First relaxation of 1 / min delays, k 2,1,...,1-chains / Cp,, instance.
5.3 Second relaxation of 1 / min delays, k 2,1,..., 1-chains / Cp,. instance.
5.4 Weighted, directed graph corresponding to scheduleé!.
5.5 Weighted, directed graph corresponding to schedule 62.

5.6 Obtaining schedule @ from scheduleo*.
5.7 Four possible forms for any schedule with job J;, scheduled first. . . .
5.8 Special case of 1 / min delays, k 2,1,...,1-chains / Cppgz.
5.9 Bins into which the 2-jobs are placed.

5.10 Instance of 1 / min delays, 2 ny,n3-chains / Cppgz.

5.11 Graph H associated with instance of 1 / min delays, 2 n;,ny-chains
[Cmaze « v o vt e e e e e e e e e e e e e e e

5.12 Schedule generated using the preemptive version of the Schrage algo-
rithm. . . . L e

5.13 Bicriterion shortest pathnetwork.,

SUMMARY

We investigate one-machine scheduling problems subject to generalized prece-
dence constraints. A precedence constraint specifies that the first of a pair of jobs
must be completed before the second can begin. Under our generalized notion, not
only must the first job be completed before the second can begin, but also, the dif-
ference between the start time of the second job and the completion time of the first
job must fall in a given pair-dependent interval. The left endpoint of this interval,
if greater than zero, specifies a minimum delay and the right endpoint, if finite,
specifies a maximum delay between the two jobs.

Generalized precedence constraints can arise in scheduling athletic competitions.
An obvious requirement for scheduling of this kind is the inclusion of minimum delays
between certain pairs of events (jobs) to allow athletes time to rest.

Literature directly related to generalized precedence constrained scheduling is
seermningly scant, dealing mostly with special cases and related constraints. To our
knowledge, this dissertation contains the first explicit identification of generalized
precedence constraints as we have defined them and represents the first systematic
treatment of generalized precedence constrained scheduling.

Our major emphases include drawing the line between easy and hard problems
with respect to precedence constraint type, precedence relation, and optimality cri-
terion and identifying suitable algorithms and finding effective heuristics for prob-
lems that are easy and hard, respectively. We consider minimizing makespan, total
completion time, or total weighted completion time subject to minimum delay prece-

dence constraints, maximum delay precedence constraints, or a combination of the

xi

two for various precedence relations. We show that most of these problems are NP-
hard for all but the simplest of precedence relations. We then present a miscellany
of results including polynomially solvable special cases, heuristics, and bounds for
two minimum makespan problems subject to minimum delay precedence constraints

which are not known to be solvable in polynomial time.

xii

CHAPTER 1

INTRODUCTION

In this dissertation, we investigate one-machine scheduling problems subject to
generalized precedence constraints. Ordinarily, requiring that job J; precedes job
Jj» (denoted by J; — J;) means job J; must be completed before job J; can begin.
Under our generalized notion of precedence constraints, not only must job J; be
completed before job J;» can begin, but also, the time between the end of job J;
and the beginning of job J;; must be at least I;;;, but no more than u;;, where
0 < lj;s < ujj and lj; is finite. We adopt the convention u;; = oo in the absence
of an upper bound and we assume [;; is an integer and u;j is an integer whenever
Ujjr < 00.

In general, we assume that a finite set J of jobs is to be scheduled on a single
machine that can process no more than one job at a time and is continually available
from time zero onwards. Each job J; € J has processing requirement p;, assumed
without loss of generality to be a nonnegative integer. Preemption is not allowed,
that is, each job J; must remain on the machine without interruption for p; time
units. In order to be feasible, a schedule, o, which specifies a non-negative integer
start time o(7) (and completion time Cj(¢) = o(j) + p;) for each job J; € J, must

satisfy the generalized precedence constraints, given by
iy <a(j') - Cj(o) Sujp V< J;,Jj >€P,

where P C JxJ is the set of all precedence constrained job pairs. Notice that if

l;;7 = 0 and u;j = oo, then the generalized precedence constraint corresponding to

< Jj,Jjy > € P is an ordinary precedence constraint. Problems for which {;; >
0 (u;» < o) for some < J;,J;; > € P will be said to be subject to minimum
(mazimum) delay precedence constraints.

Minimum delay precedence constraints bear a close resemblance to the con-
straints of the oft studied sequential ordering problem (see [9] for example). The
sequential ordering problem is to schedule jobs Ji,...,J, on a single machine to min-
imize makespan, where setup time c;; € Z¢ (Z¢ = {0} U Z+ and Z* = {1,2,...})
must elapse between the end of job J; and the beginning of job J;: if and only if
job J; itmmediately precedes job J;. The homologous minimum delay precedence
constraint,

o(i') = Ci(e) 2 liy, <J;,Jj >€ P,
must be satisfied whether or not job J; immediately precedes job J;.

Our objective is to find a feasible schedule ¢ which, among all feasible sched-
ules, minimizes a specified function of the job completion times. The particular
functions we are interested in include Cpnoz(0) = maxy ey Ci(a), T 1;¢5Cj(o), and
TJ,es wiCj(0), where w; € Z§ for all J; € J. These objective functions are com-
monly referred to as makespan, total completion time, and total weighted completion
time, respectively. A feasible schedule ¢ which, among all feasible schedules, mini-
mizes the given objective function, is said to be optimal.

We restrict ourselves to job sets of the form

J= O {Ji,ly---a']i.n.'} U {*}1

=1

where k > 2, n; € Z* fort = 1,.. ., k, and, without loss of generality, n; > ... > n,.

We further restrict ourselves to precedence relations on J of the form
P={<JijyJijs1>t=1..,kji=1...,0, =1} U{< Jin, x>, t=1,...,k}

For ease of notation, we refer to such a precedence relation P on J as k ny,...,n-

chains, or simply as k ni-chains if n; = ... = n; (see Figure 1.1). Our usage of

Figure 1.1: The & n,,...,n;-chains precedence graph.

“chains” differs from the customary definition of that term. We will frequently use
diagrams like the one in Figure 1.1 and will often find it useful to label job nodes
with processing requirements and precedence arcs with lower and upper bounds
on delays. If the precedence relation is k ny,...,ni-chains, then we will, without
loss of clarity, refer to I;;, i +1 (uij,ij+1) simply as L; (u;;) for i = 1,...,k and
J=1,...,n_1 and to l; n;, « (Uin,,.) simply as Ln, (uin;) fori=1,... k.

The reader can easily verify that the k n,,...,ns-chains precedence graph is
“node” transitive series parallel (see Lawler [16]). Thus, any problem which is hard
for k£ ny,...,ni-chains is hard for the more general class of transitive series narallel
precedence graphs,

We use the three-field @ / B / 4 classification scheme of Lawler, Lenstra, Rin-

Table 1.1: Three-field a / B / 7 classification scheme.

Field Description
a (Machine Environment) | @ = 1 for single machine
B (Job Characteristics) type of precedence constraints

precedence relation
v (Optimality Criterion Chmaz

to Minimize) Y C;
X w;C;

Table 1.2: Precedence constraint terminology.

Constreint Type Interpretation
min delays minimum delays only

(ujp =00V < J;,J; > € P)
max delays maximum delays only

(Lj =0V < J;,J; > € P)

min or max delays | either minimum or maximum delays
but not both

(;» =0 or ujy =00V < J;,Jiy > € P)
min and max delays | both minimum and maximum delays
allowed

(possible to have l;; > 0 and ujj < o)

nooy Kan, and Shmoys [18] in conjunction with special terminology to describe
constraint types and precedence relations. This classification scheme is described
briefly in Table 1.1. Qur precedence constraint terminology is described in Table 1.2.
Our precedence relation terminology was defined in the previous paragraph. As an
example, 1 / min delays, k 1-chains / 3~ C; is the problem of minimizing the total
completion time of jobs Ji,...,Ji, and *, where job J; must precede job * by at
least {;, time units for j = 1,...,k.

The primary topics of this dissertation are scheduling and computational complez-

ity theory. Additional information on scheduling is contained in Lawler, Lenstra,

Rinnooy Kan, and Shmoys [18], Baker (3], Conway, Maxwell and Miller [7], and
Rinnooy Kan [20]. Garey and Johnson [10] and Johnson’s ongoing column in
The Journal of Algorithms [14] are excellent references on computational complexity
theory.

This chapter is organized as follows. In Section 1.1, we provide motivation
for generalized precedence constrained scheduling (hereafter referred to as GPCS).
Section 1.2 contains a review of existing literature related to GPCS. Finally, in Sec-
tion 1.3, we describe the major emphases of our research and outline the remainder

of this dissertation.

1.1 Motivation

The problem that gave rise to the present research is the scheduling of the
Olympic Games. An obvious requirement for scheduling of this kind is the inclusion
of minimum delays between certain pairs of events (jobs) to allow athletes time to
rest. Andreu and Corominas [2] presented a binary integer program for scheduling
the 1992 Barcelona Olympic Games in which they specified, for each precedence
constrained pair of jobs, one minimum delay between the beginning of the first job
and the beginning of the second job, and another minimum delay between the end of
the first job and the end of the second job. Equivalently, they might have specified
a single minimum delay between the end of the first job and the beginning of the
second job for each precedence constrained pair.

In modeling the Olympic scheduling problem, Andreu and Corominas introduced

0-1 variables z;, where

za=d b if event j begins at time t
71 0, otherwise.

Assuming that precedence constraints arise solely from the fact that a facility can
accommodate only one event at a time, then requiring i — j implies event j can

start no earlier than time p; + {;;. Hence, zjo = zj1 = ... = Tjp41,-1 = 0. Now,

if events 1,...,n must precede event j, then determining the earliest possible start
time for event j is a one-machine minimum makespan problem subject to minimum
delay precedence constraints. Solving such a problem for each event j allows us to
fix some of the variables r;, at zero. Operations such as these which allow us to
fix variables prior to solving a problem are known as preprocessing. The symmetric
problem of determining the latest start time for each event j also allows us to fix
some of the z;’s at zero.

Suppose we solve the Olympic scheduling problem by branch-ard-bound as fol-
lows. For each problem in which the event order is not completely determined, we
select a pair of events j and j’ such that event j is allowed to precede event j’ and
vice-versa, and we consider two subproblems, one with event j preceding event j'
and the other with event j' preceding event j. Fixing the order of events j and j’ is
the same as introducing an additional ordinary precedence constraint. Since each
subproblem has exactly one more ordinary or generalized precedence <onstraint than
its immediate predecessor, then it is possible to fix at least as many and likely more
z;i’s at zero for a subproblem than for its immediate predecessor. Thus, it may be
worthwhile to preprocess by solving a sequence of GPCS problems at each node of
the branch and bound tree.

To summarize, generalized precedence constraints (minimum delay precedence
constraints in particular) can arise in the scheduling of athletic competitions. More-
over, GPCS problems arise naturally when solving such athletic scheduling problems
modeled using 0-1 variables z;;. Having provided motivation for GPCS, we now re-

view the literature related to GPCS.

1.2 Related Literature

Literature directly related to GPCS is seemingly scant. The subjects of papers
that do pertain to GPCS fall into two broad categories, namely, special cases and

related constraints. We now review papers belonging to each of these categories.

The problem of minimizing makespan on a single machine where each job J; € J
has release time r; (i.e., the processing of job J; cannot commence until time r;),
processing requirement p;, and tail g; (i.e., job J; must spend time g; in the system
after it has been processed) is a special case of 1 / min delays, k& 2-chains / Cpa:.
This release time and tail prchlem has been widely studied by Carlier [5] and others
in the context of job shop scheduling, where its solution provides lower bounds.

Another special case of GPCS is described by Shapiro [21]. Shapiro classifies the
problem of scheduling pairs of jobs separated by known, fixed time intervals on a
single machine to minimize makespan as a two-machine job shop problem in which
each job consists of three operations. The first and third operations, corresponding
to the pair of jobs, are processed on Machine 1, while the second operation, corre-
sponding to the separation interval, is processed on Machine 2. Although Machire 1
can process at most one operation at a time, Machine 2 has unlimited capacity. No
wait in processing is permitted, that is, once a job is begun, its operations O,, O,
and O3 must be processed on the machines without delay between them. Shapiro’s
problem is in fact a special case of 1 / min and max delays, k 2-chains / Cp,,..

As evidenced by Carlier [5] and Shapiro [21], special cases of GPCS problems
are not new to the literature. Unfortunately, the treatment of such cases is rather
limited in scope. To our knowledge, no comprehensive or systematic study of GPCS
problems exists.

Let us now consider papers which detail related constraints. Generalized prece-
dence constraints appear elsewhere in the literature. Chretienne [6] considered a
problem related to parallel computer architectures wherein the number of proces-
sors is assumed to be infinite and minimum communication delays must occur be-
tween precedence constrained job pairs only if the two are processed by different
processors. Chretienne’s “Generalized Precedence Constraints,” which apply to the
multiple machine environment, are similar to but clearly not the same as our mini-

mum delay precedence constraints.

Several authors describe models which include what might be called generalized
disjunctive constraints. Disjunctive constraints specify for pairs of jobs J; and J,/
that either job J; must precede job Jj, or vice-versa. Analagous to generalized
precedence constraints, generalized disjunctive constraints specify for pairs of jobs
J; and J;» not only that either job J; must precede job J; or vice-versa, but also
that the time between the end of the first job to be completed and the beginning
of the other job must be at least I;;; = l;;, but no more than u;; = u;,;, where
0 < l;;; € ujj» and lj; is finite. Even more generally, we can assume the delays
depend on the actual job ordering, that is, l;; # l;;; and ujj # uj;.

As mentioned earlier, fixing the order for a disjunctively constrained pair of jobs
is the same as introducing an additional ordinary precedence constraint. By the same
token, fixing the order for a generalized disjunctively constrained pair of jobs is the
same as introducing an additional generalized precedence constraint. Thus, general-
ized disjunctive constraints are in essence a generalization of generalized precedence
constraints.

Andreu and Corominas [2] specified not only minimum delay precedence con-
straints, but also minimum delay disjunctive constraints. In scheduling dressage
competitions, Shirland [22] specified an optimal interval of 40 minutes to four hours
between rides for the same competitor. Since Shirland imposes no precedencze con-
straints on pairs of rides for the same competitor, then these requirements induce

minimum and maximum delay disjunctive constraints.

1.3 Major Emphases

Our research includes two major emphases. The first involves drawing the line
between easy and hard GPCS problems with respect to preéedence con.traint type,
precedence relation, and optimality criterion. The second involves identifying suit-
able algorithms and finding effective heuristics for GPCS problems that are easy

and hard, respectively.

The remainder of this dissertation is organized as follows. Chapters 2, 3, and 4
are devoted to the classification of GPCS problems with respect to computational
complexity. The GPCS problems we address in Chapter 2 are minimum makespan
problems for which the number of chains is a parameter, k. In Chapter 3, we
discuss total completion time and total weighted completion time problems with
precedence relation k 1-chains. The problems we address in Chapter 4 are minimum
makespan problems for which the number of chains is two. In Chapter 5, we present
a miscellany of results including heuristics, polynomially solvable special cases, and
bounds for two problems which are not known to be solvable in polynomial time, one
from Chapter 2 and the other from Chapter 4. Finally, we summarize our research

and make suggestions for further research in Chapter 6.

CHAPTER 2

1 / min and max delays,
kny,...,ng-chains / Cmaz

In this chapter, we draw the line between easy and hard minimum makespan
problems for which the number of chains is a parameter, k, by considering increas-
ingly complex ‘k chains’ precedence relations. In Section 2.1, minimum delay prece-
dence constraints only are allowed, while in Section 2.2, maximum dclay precedence
constraints only are allowed. Minimum and maximum delay precedence constraints

are permitted in Section 2.3.

2.1 Min Delays Problems

In general, solutions to 1 / min delays, k n,,...,ni-chains / Cpnar problems
include machine idle time. Consequently, sequences do not necessarily uniquely
correspond to schedules. A sequence of the jobs in J that satisfies the underlying
ordinary precedence constraints imposed by P is said to be feasible. We now show
that corresponding to each feasible sequence is a unique schedule in which each job,
and job * in particular, is scheduled as early as possible so as to respect the sequence
and to satisfy the machine capacity and the minimum delay precedence constraints.
The following discussion is adapted from Carlier [5].

Let n =|J| —1 = %, n;. The sequence J., — -+- — J._,, of the jobs in J is

en+l

feasible if and only if

10

1. J.,,, = *and

2. e, =(i,)) and ¢, = (2,7 + 1) implies 1 <r < s < n, wherei € {1,...,k} and
jE{l,...,n,—«l}.

We associate with each feasible sequence J,, — --- — J., — * a weighted, directed
graph G = (X, A). The node set X = {e1,...,en} U {*} and the arc set A =
A1 U Az U Az, where

Al = {(ej,e,-+1),j = l,...,n-— 1},

Az = {(en, %)},

and
Az = {(ej,e,-:) < Je,’-]e,. > € P}

Each arc (e;, e;1) € Aa is assigned a weight of p., +1,, arc (e, *) is assigned a weight
of p.,, and each arc (ej,e;+1) € Ay \ A3 is assigned a weight of p.,. The arcs in 4,
and A; represent the machine capacity constraints while the arcs in A; represent
the minimum delay precedence constraints.

Consider the schedule, o, where o(e;) = 0, o(e;) is equal to the weight of the
maximum weight path in G from node ¢, to node ¢; for j = 2,...,n, and o(*)
is equal to the weight of the maximum weight path in G from node e; to node
*. By weight of a path, we mean the sum of the arc weights over all arcs in the
path. Due to the special linear structure of G, schedule ¢ can be computed in time
O(] A|) = O(r). By construction, the weight of any path from node e; to node
e; (node *), and the weight of the mazimum weight path from node e; to node ¢;
(node *) in particular, provides a lower bound for the start time of job J., (job *)
in any schedule that respects the sequence J,, — --- — J., — #* and satisfies both
the machine capacity and the minimum delay precedence constraints. Hence, in
schedule o, each job, and job * in particular, is scheduled as early as possible so as
to respect the sequence J,, — .- — J,, — * and to satisfy the machine capacity

and the minimum delay precedence constraints.

11

Jex Jez Jes c v Je., *

.........

0 Pey Pep Pes Pen Pe

Figure 2.1: Example Gantt chart.

We refer to a schedule computed in this manner as the active schedule associated
with the given sequence. Clearly, an optimal schedule is an active schedule. Thus, 1
/ min delays, k ny,...,ni-chains / Cp,. is the problem of finding, among all feasible
sequences, a sequence that has associated active schedule with minimum makespan.
Hereafter, we drop the modifier ‘active’ unless required for clarity.

A convenient means of visually portraying a schedule is provided by the Gantt
chart (see Figure 2.1). The Gantt chart includes a rectangular box for each job. The
width of the box for a given job is proportional to that job’s processing requirement.
Machine idle time is represented by a dashed box with width proportional to the
amount of idle time. The horizontal line at the bottom of the chart is a time axis,
with time zero on the left-hand side, from which job start and completion times can
be read.

In a manner synonymous with the computation of the active schedule associated
with the sequence J,, — .- — J., — * from the weighted, directed graph, we can
construct the Gantt chart for this active schedule. First, we draw the box for job
Je,. Next, for j = 2,...,n, we draw the box for job J,. , inserting between this

box and the box for job J,,_, the smallest amount of idle time necessary to satisfy

=1
the minimum delay precedence constraint corresponding to < -,J., >€ P. Finally,
we draw the box for job *, inserting between this box and the box for job J., the
smallest amount of idle time necessary to satisfy the minimum delay precedence

constraints corresponding to < -, * >€ P.

12

Figure 2.2: Instance of 1 / min delays, k 1-chains / Cpmaz-

2.1.1 1 / min delays, k 1-chains / C,,;.

We first consider the min delays problem with the simplest k& chains precedence
relation, that is, k 1-chains. For ease of notation, assume J = {J,...,Ji} U {*}
(see Figure 2.2). Clearly, any feasible sequence has the form J,, — -+« — J., — *.

The schedule, o, associated with the sequence J,, — --- — J,, — * has
o(e1) =0,
o(e;) = izl p., for j =2,...,k, and
o(*) = maxj=y,.. k{o(e;) + pe; + l;} = maxj=1, k{Cc,(0) + I}

Hence,

Cmaz(o') = C.(G) = 0(*) +p. = Jg}'a'x’k{cl(a) + IJ'} + P..

For simplicity, we assume p, = 0 since the makespan of a schedule with p. = ¢ > 0
differs from the makespan of the corresponding schedule with p. = 0 by precisely c.

We now give two proofs that 1 / min delays, k 1-chains / Cp,; is solved by
sequencing jobs Jj,...,Ji in order of nonincreasing precedence delay. The first

proof involves a straightforward pairwise interchange argument.

Proposition 2.1 The I / min delays, k 1-chains / Cpor problem is solved by se-

quencing jobs Jy,...,Ji in order of nonincreasing precedence delay.

13

Proof 1: Assume o is an optimal schedule in which jobs J;,...,Js are not or-
dered by nonincreasing precedence delay. Then, there exist adjacent jobs J; and
Jj» such that J; — J; but I; < . Let o' be the schedule obtained from sched-
ule o by interchanging jobs J; and Jji. Let A = maxjen(s, s, 1 {Cr(0') + 1} =
Ina.XJ,eJ\{J,,JJ,,o}{Cr(U) +1.}. Then

Cmaz(0’) = max{4, Cj(o’) +1;, Cj(a’) + s}
= max{A, o(j) +p; + pjr + 1y o(4) + pjr + 11}
< max{A, o(j) +p; +pir + ;s o(j) +pyr + e, 0(G) + p; +pjr + 1y}
= max{4, o(j) + p; + pj» + Iy}
= max{4, o(j) +p; +1;, o(4) +pj + pjr + I/}
= max{A, C;(e) +1;, Cp(o) + 1}
= Craz(0).

Repeating this argument, we see that schedule ¢ can be transformed into a schedule
in which jobs Jy,...,Ji are ordered by nonincreasing precedence delay without

increasing the makespan. O

The second proof of Proposition 2.1 relies on the following lemma, which gives a

lower bound for the makespan of an optimal schedule for 1 / min delays, &£ 1-chains

/ Cma:-

Lemma 2.2 Let o* be an optimal schedule. Then

Crmaz(0®) 2 2(S) = Y pj +minl; VS C J\ {+}.
ies J,€S

Proof: Let S C J\ {*} and let J,, = argmaz,,es{o*(j)}. Then

Cm(0®) = 0*(m) +pm > Y p;.
J,’GS

14

It follows that

Crmaz(0%) = Cu(0°) 2 Cm(0") + 1w = D p; + mini;. O
i J,€8

We now present a second, more elegant proof that 1 / min delays, & 1-chains /
Crmaz is solved by sequencing jobs Jy,...,Ji in order of nonincreasing precedence
delay. Lemma 2.2 and the following proof are after the manner of Carlier [5].
Proof 2: Let o be the schedule associated with the sequence J; — - -+ — J;y — =,

where l; > .-+ 2 ;. Let J, be a critical job, that is, a job such that
Cmaz(0) = C.(0) = C(o) + L.

Let § = {1,...,c}. By assumption, minjes/; = l.. Since

Co) = o) +pe =3 pi = 3 is

j=1 J,es

then

Crmaz(0) = lee:spj + Tég l; = k(S).

The result follows from Lemma 2.2, since k(S) is a lower bound on the optimal

makespan. O

The most time consuming step in solving the 1 / min delays, k 1-chains / Cp,:
problem is sorting the jobs by precedence delay. Therefore, 1 / min delays, & 1-
chains / Cynar can be solved in time O(klgk).

2.1.2 1 / min delays, k£ 2,1,...,1-chains / Cp,:

We now show that whereas 1 / min delays, k 1-chains / Cy,; is solvable in poly-

nomial time, the problem obtained from it by allowing one of the chains to include

15

two jobs is NP-hard. An optimization problem is said to be NP-hard if the decision
problem obtained from that problem by introducing an additional parameter, say
v, and asking the question, “is there a solution with value at most (or at least) y?”
is NP-complete. The decision problem version of 1 / min delays, k 2,1,..., l-chains
/ Cm;, which we refer to appropriately as 1 / min delays, k 2,1,...,1-chains /
Cmaz < vy, is defined as follows.

INSTANCE: Job set J = {Jz,,Je, } U {Ja,...,Jk} U {*}, processing requirement
p; € Z& V J; € J, precedence relation P on J of the form P ={< J;,,J,, >}
U{< Jr,* >} U {< Jj,* >, j = 2,...,k}, nonnegative integer minimum
delays I;,, I;,, and [; for j = 2,...,k, and a positive integer y (see Figure 2.3).

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — Zg,
with o(7) > o(j') implying o(3) 2 o(;') + p;») that satisfies the minimum
delay precedence constraints (i.e., o(j') — Cj(¢) 2 ; V < J;,Jj» >€ P,
where Cj(o) = o(j) + p; V J; € J) and that meets the overall deadline (i.e.,
C.(o) <y)?

The problem we use for the reduction is PARTITION, which is defined as follows.
INSTANCE: Index set A= {l,...,a} and size s(j) € Z¢ Vj € A.
QUESTION: Is there a subset A’ C A such that 3;c 4 3(j) = ¥ earar 8(7)7

Karp [15] contains a proof that PARTITION is NP-complete.
We now prove that 1 / min delays, k£ 2,1,...,1-chains / Cpa, is NP-hard by

showing that the corresponding decision problem is NP-complete.

Proposition 2.3 The [/ min delays, k 2,1,...,1-chains / Cpror < y problem is
NP-complete.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify that

the sequence is feasible and that the makespan of the associated schedule does not

16

Figure 2.3: Instance of 1 / min delays, k 2,1,..., 1-chains / Craz < ¥.

exceed the overall deadline. Hence, 1 / min delays, k 2,1,...,1-chains / Cpez < y
is in NP.

Let A= {1,...,a} and s(j) € Z¢ for all j € A be any instance of PARTITION.
We construct a corresponding instance of 1 / min delays, k£ 2,1,...,1-chains /

Cmaz < y in polynomial time as follows:
k=a+1;
Pzy =P = 15
ley = Iz, = 3 Tjeas();
pi=s(j-1),7=2,...,k
;=0,7=2,...,k
p. =0;

y=2X,eas(d)+2.

17

Since p;, + pz, + }:",;2 P; =y, a schedule can have makespan at most y if and
only if that schedule includes no machine idle time. In any feasible schedule without
machine idle time, the sum of the processing requirements of jobs from {Ja,..., Ji}
scheduled between jobs J;;, and J;, (Jz, and *) must be at least I, = 1 ;¢ s(7)
(l; = 1 Tiea s(3)). Now ©F_,p; = Tje4 3(3), so in any feasible schedule without
machine idle time, the sum of the processing requirements of jobs from {Jz,...,Ji}
scheduled between jobs J;, and J;, must equal 1 ;¢4 3(7), as must the sum of the
processing requirements of jobs from {Js,...,Ji} scheduled between jobs J;, and
+. Thus, there exists a feasible schedule that meets the overall deadline if and only
if there exists a partition of {Ja,...,Ji} into two disjoint subsets such that the sum

of the processing requirements of the jobs in each subset equals § ;¢4 5(j). O

Proposition 2.3 does not preclude a pseudo-polynomial time algorithm (i.e., an
algorithm with running time bounded by a polynomial in Maz([I] and Length(I],
where, for each instance I, Maz[I] is an integer corresponding to the largest number
in I and Length[I] is an integer corresponding to the number of symbols required
to describe I under some reasonable encoding scheme (see [10])) for 1 / min delays,
k 2,1,...,1-chains / Cpaz. Whether or not such an algorithm exists is an open

question.

2.1.3 1 / min delays, k£ 2-chains / Cy.

Since 1 / min delays, k 2,1,...,1-chains / Cpqz is NP-hard, then so is 1 / min
delays, k 2-chains / Cmaz. We now prove that 1 / min delays, k 2-chains / Cpa:
is NP-hard in the strong sense. A decision problem II is said to be NP-complete
in the strong sense if II is NP-complete even if we permit unary or stroke encoding
of numbers (e.g., 4 is encoded as 1111). An optimization problem is said to be
NP-hard in the strong sense if the related decision problem is NP-complete in the
strong sense. The decision problem version of 1 / min delays, k 2-chains / Craz,

which we refer to as 1 / min delays, k 2-chains / Cpnar < ¥, is defined as follows.

18

Figure 2.4: Instance of 1 / min delays, k 2-chains / Cppaz < v.
INSTANCE: Job set J = Ui, {Jj1,Ji3} U {*}, processing requirement p; €
Zt V J; € J, precedence relation P on J of the form P ={< J;;,J;2 >,
j=1,...,k}U{< Jjz,* >, j = 1,...,k}, nonnegative integer minimum

delays I;; and {j3 for j = 1,...,k, and a positive integer y (see Figure 2.4).

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — Z¢,
with o(j) > o(j') implying o(j) > o(j') + pj») that satisfies the minimum
delay precedence comstraints (i.e., o(j') — Cj{¢) 2 ; V < J;,J;y >€ P,
where C;(0) = o(j) + p; V J; € J) and that meets the overall deadline (i.e.,
C.i(o) < y)?

Our reduction is from SEQUENCING WITHIN INTERVALS, which is defined

as follows.

INSTANCE: TasksetT = {1,...,} and, for each task j € T, a length I(j) € Z*,
a release time r(j) € Z¢, and a deadline d(j) € Z*.

QUESTION: Is there a one-machine schedule for T (i.e., a function ¢ : T — Z¢,
with ¢(5) > é(;') implying ¢(j) 2 ¢(5’) + I(j’)) that satisfies the release time

19

constraints and meets all the deadlines (i.e., for all j € T, ¢(j) 2 r(j) and
$(3) +1(7) £ d(5))?

See Garey and Johnson [10] for a proof that SEQUENCING WITHIN INTERVALS
is NP-complete in the strong sense.

We now establish the computational complexity of 1 / min delays, k 2-chains /
Crmaz < V.

Proposition 2.4 The 1 / min delays, k 2-chains / Cpoz < y problem is NP-

complete in the strong sense.

Proof: We can show that a decision problem II' is NP-complete in the strong

sense by proving
1. II' is in NP and

2. there exists a pseudo-polynomial transformation f from some known strongly

NP-complete problem II to IT".

Let Dy, Du, Yn, Yo, Length, Length’, Max, and Maz' be the instance sets, ‘yes’
sets, and specified length and max functions corresponding to problems II and II',
respectively. Garey and Johnson [10] define a pseudo-polynomial transformation

from II to I’ as a function f : Dy — Dy that satisfies

1. f can be computed in time polynomial in the two variables Length[I] and
Maz[I],

2. there exists a polynomial ¢, such that, for all 7 € Dy,
q1(Length(f(I)]) 2 Length{l],

3. there exists a polynomial ¢ such that, for all I € Dy,
Maz'[f(I)] < q2(LengthlI], Maz(I]), and

4. for all I € Dq, I € Yy if and only if f(I) € Yn.

20

The pseudo-polynomial transformation is to the class of strongly NP-complete
problems as the polynomial transformation is to the class of NP-complete prob-
lems. Since every NP-complete problem can be polynomially transformed to a
given NP-complete problem, then the existence of a polynomial algorithm for any
NP-complete problem implies the existence of a polynomial algorithm for every
NP-complete problem, whence P = NP. Since every strongly NP-complete problem
can be pseudo-polynomially transformed to a given strongly NP-complete problem,
then the existence of a pseudo-polynomial algorithm for any strongly NP-complete
problem implies the existence of a pseudo-polynomial algorithm for every strongly
NP-complete problem, whence P = NP.

Given any sequence of the jobs in J, we can, in polynomial time, verify that
the sequence is feasible and that the makespan of the associated schedule does not
exceed the overall deadline. Thus, 1 / min delays, k 2-chains / C,,, < y is in NP.

Let task set T = {1,...,t} and, for each task ; € T, length I(j) € Z*, release
timer(j) € Z{, and deadline d(j) € Z* be any instance of SEQUENCING WITHIN
INTERVALS. We construct a corresponding instance of 1 / min delays, k 2-chains

/ Cmaz < y as follows:
k=t
Pin=0,p2=1(), j=1,...,k
p. =0;
Li=r(j),j=1,...,k
Y = maXj=,....¢ d(j);
liz=y-4d(j),j=1,...,k

One can easily verify that this mapping from SEQUENCING WITHIN INTERVALS
to 1 / min delays, k 2-chains / Cpqa: < y satisfies the computation time and instance

size requirements for a pseudo-polynomial transformation.

21

Suppose there exists a schedule ¢ : J — Z$ that satisfies the minimum delay
precedence constraints and meets the overall deadline. Let us define schedule ¢ :
T — Z{ by ¢(j) = 0(52) for j = 1,...,t = k. Since Ij; = r(j), then o(j2) > rf})
for j = 1,...,k, which implies ¢(3) > r(j) for j = 1,...,t. Now

U(j2)+pj2+lj2 S 0’(*) < nyl'j = 1s*"7k)
which implies
o(12) +pia Sy = (y = d(§)) = d(j) for j = 1,..., k.

Hence, ¢(5) + I(j) < d(j) for j = 1,...,t and schedule ¢ is feasible for SEQUENC-
ING WITHIN INTERVALS.

Now, suppose there exists a schedule ¢ : T — ZJ such that, for all j € T, ¢(5) >
r(7) and ¢(j) + (j) < d(5). Let us define schedule o : J — Z$ by

o(j1)=0for j =1,...,k,
o(j2)=¢(j) for j=1,...,k=t, and
0’'x) = MaXm=1,. k{0(M2) + Pmz + Im2}.

Schedule ¢ satisfies the minimum delay precedence constraints corresponding to

< Jji,Jiz > for j =1,...,k since

9(j2) - (¢(51) + pin) = ¢(52) = 6(j) 2 r(j).

By definition of o(*), schedule o satisfies the minimum delay precedence constraints
corresponding to < Jjz,* > for j = 1,... k. Finally, schedule o meets the overall

deadline since
(7)) +1(J) Sd(G) forj=1,...,t = o(j2) +pja < d(j) for j =1,...,k,

which implies

22

Ci(o) = o(+)
= MaXpm=1,. k{0(M2) + Pmz + lm2}
€ maxpm=1,..k{d(m) + ln2}
= MaXme1,. k{d(m) + y — d(m)}
=y.0

2.14 1 / min delays, k£ n;,1,...,1-chains / C,,,,

The 1 / min delays, k ny,1,...,1-chains / Cpqr problem is NP-hard, since, as
shown in Subsection 2.1.2, 1 / min delays, k 2,1,...,1-chains / Cpn,, is NP-hard.
In this subsection, we prove that 1 / min delays, k ny,1,...,1-chains / Cpmqz is in
fact NP-hard in the strong sense.

The decision problem version of 1 / min delays, k ny,1,...,1-chains / Crnex,
which we refer to as 1 / min delays, & n,,1,...,1-chains / Cpna: < y, is defined as

follows.

INSTANCE: Job set J = {Jy,,...,Jz, } U {/2,...,Ji} U {#}, processing re-
quirement p; € Z¢ V J; € J, precedence relation P on J of the form P =
{<Ijdeyn >3 7 = Loooym = 1JU{L Jop v DYU{< Jjyx >, j =
2,...,k}, nonnegative integer minimum delays I, for j = 1,...,n, and {;
for j =2,...,k, and a positive integer y (see Figure 2.5).

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — Z,
with a(j) > o(j') implying ¢(j) > o(j’) + p;) that satisfies the minimum
delay precedence constraints (i.e., ¢(j') — Cij(o) 2 |; ¥V < J;, J;j > € P, where
Ci(o) = o(j) +p; Y J; € J) and that meets the overall deadline (i.e., C.{(g) <
y)?

The problem we use for the reduction is 3-PARTITION, which is defined as

follows.

INSTANCE: Index set T = {1,...,3t} and positive integers a;,..., a3, and b,
with a; € (35,30)Vj € T and Tjera; = th.

23

Pz,

Figure 2.5: Instance of 1 / min delays, k ny,1,...,1-chains / Cpno: < y.

24

QUESTION: Can T be partitioned into t disjoint subsets T,...,T, such that

Yierraj=bfori=1,...,t7

Garey and Johnson [10] contains a proof that 3-PARTITION is NP-complete in the
strong sense.

We now prove that the decision problem version of 1 / min delays, k n),1,...,1-
chains / Cyn,. is strongly NP-complete, and hence, the optimality version is NP-hard

in the strong sense.

Proposition 2.5 The | / min delays, k ny,1,...,1-chains / Cpor < y problem is

NP-complete in the strony sense.

Proof: The 1 / min delays, k n;,1,...,1-chains / Cpnsz < y problem is in NP
since, given any sequence of the jobs in J, we can, in polynomial time, verify that
the sequence is feasible and that the makespan of the associated schedule does not
exceed the averall deadline.

Let T = {1,...,3t} and positive integers ai,...,aa, and b, with a; € (}b, 1b)
for all j € T and ¥ jera; = tb be any instance of 3-PARTITION. We construct a

corresponding instance of 1 / min delays, k n,,1,..., 1-chains / Cphar < y as follows:

k=3t+1,n =t

25

One can easily verify that this mapping from 3-PARTITION to 1 / min delays,
k ny,1,...,1-chains / Chnar < y satisfies the computation time and instance size
requirements for a pseudo-polynomial transformation.

Since 377L, pz, + Zf:z P = ¥, a schedule can have makespan at most y if and
only if that schedule includes no machine idle time. In any feasible schedule without
machine idle time, the sum of the processing requirements of jobs from {J;,..., Ji}
scheduled between jobs J.;, and J;,,, (J:, and *) must be at least [;, = b for
i=1...,m—=1=t-1(l, =b). Since E_’;=2 p; = tb, then in any feasible schedule
without machine idle time, the sum of the processing requirements of jobs from
{J2,...,Ji} scheduled between jobs J;, and J.,, must equal bforj=1,...,n;—1
and the sum of the processing requirements of jobs from {J,,...,Ji} scheduled

between jobs J,, and * must equal b. Thus, there exists a feasible schedule that

ny
meets the overall deadline if and only if there exists a partition of {Js,...,Ji} into
t disjoint subsets such that the sum of the processing requirements of the jobs in

each subset equals b, O

2.2 Max Delays Problems

Without loss of generality, solutions to 1 / max delays, k n;,...,ni-chains /
C'maz problems include no machine idle time, since removing machine idle time from
a schedule that satisfies the maximum delay precedence constraints results in a
feasible schedule with smaller makespan. Schedules without machine idle time are
necessarily minimum makespan schedules. Thus, 1 / max delays, &k n,, ..., n,-chains
| Cmaz is the problem of finding a schedule without machine idle time that satisfies

the maximum delay precedence constraints.

2.2.1 1 / max delays, k 1-chains / Cp,,

We first consider the max delays problem with the simplest k chains precedence

relation, that is, k 1-chains. For ease of notation, assume J = {Jy,...,i}U{x} (see

26

Figure 2.6: Instance of 1 / max delays, k 1-chains / Cpq..

Figure 2.6). In addition, let p(S) = 3", ¢sp; for all § C J. As before, we assume
p. =0.

Suppose that for some S C J\ {*}, u; < p(S\ {J;}) for all J; € S. Then, there
can be no feasible schedule since, in any schedule, the maximum delay precedence
constraint corresponding to the earliest scheduled job in S will be violated. We will
refer to a subset S € J \ {*} having the property u; < p(S \ {J;}) for all J; € S as
a blocking subset.

In any feasible schedule without machine idle time, job * starts at time p(J).
Thus, the completion time of job J; in any feasible schedule without idle time must
be at least p(J) — u; for all j = 1,...,k. Equivalently, the start time of job J;
in any feasible schedule without idle time must be at least p(J \ {J;}) — u; for all
j =1,...,k. Define release dates r; = p(J \ {J;}) —u; forall j = 1,..., k. We now
show that the 1 / max delays, k 1-chains / Cma, problem is solved by sequencing

the jobs Jy,..., Ji in order of nondecreasing release date.

Proposition 2.8 Assume ry < --- < ry. Then, either the instance of 1 / maz
delays, k 1-chains / Cmar is infeasible or the schedule without machine idle time

corresponding to the sequence J; — --- — Jp — * is optimal.

Proof: Let o be the schedule without machine idle time corresponding to J, —

- — Ji — . Suppose there exists ¢+ € {l,...,k} such that o(z) < r;. Let

27

S={J;: a(j)20(), j=1,...,k}. Sincer; <--- < ri, then
ri2r>o()=p(J\S) VJ;€S.

Thus,
pUN{Ji}) —uj=r; >p(J\S) VJ; €5,
which implies
u; <p(S\{J;}) VJ;€8S.

By definition, S is a blocking subset and the instance is infeasible.
On the other hand, suppose o(j) 2 r; for j = 1,...,k. Then, for each j =
1,...,k,

0>r;—o(j) =p(J\{J;}) —u; —0o(j) = o(*) - p; —u; — o(7),

which implies o(*) — Cj(0) < u; for each j = 1,..., k. Therefore, schedule ¢ is

feasible and hence optimal. O

Sorting the jobs according to release date is the most time consuming step in
solving 1 / max delays, k 1-chains / Cmaz. Thus, the 1 / max delays, & 1-chains /
Crmaz problem can be solved in time O(klg k).

2.2.2 1 / max delays, k£ 2,1,...,1-chains / Cy,;

We proved in the previous subsection that 1 / max delays, k 1-chains / Cpme:
is solvable in polynomial time. We now show that the problem obtained from it
by allowing one of the chains to include two jobs is NP-hard. In other words, we
prove that determining whether or not there exists a schedule without machine idle
time that satisfies the maximum delay precedence constraints, where the precedence
relationis & 2,1,..., 1-chains, is NP-complete. This decision problem, which we refer

to as 1 / max delays, k 2,1,...,1-chains / Cpmar < p(J), is defined as follows.

INSTANCE: Job set J ={J,,,J,} U {/a,...,Js} U {*}, processing requirement
p; € Z§ Y J; € J, precedence relation P on J of the form P = {< J;,,Jz, >}

28

Figure 2.7: Instance of 1 / max delays, k 2,1,..., l-chains / Cp.z < p(J).

U{< Iz, * >} U {< Jj,* >, j = 2,...,k}, maximum delays u,,, u,,, and u;
for j =2,...,k, where each maximum delay is either infinite or a nonnegative

integer (see Figure 2.7).

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — 2§,
with o(j) > o(j’) implying o(5) = o(;') + p;») that satisfies the maximum
delay precedence constraints (i.e., o(j') — Cj(¢) < u; V < J;,J; >€ P,
where C;(o) = o(j) + p; V J; € J) and that meets the overall deadline (i.e.,
Cu(o) < p())?

We now show that the decision problem version of 1 / max delays, £ 2,1,...,1-

chains / Cpqez is NP-complete.

Proposition 2.7 The 1 / maz delays, k 2,1,...,1-chains / Cpnor < p(J) problem
i8 NP-complete.

Proof: The 1 / max delays, k 2,1,...,1-chains / Cpar < p(J) problem is in NP

since, given any sequence of the jobs in J, we can, in polynomial time, verify that

29

Jz, Jobs in § in any order Jz, Jobs in 7 in any order *

Figure 2.8: Feasible schedule for constructed instance of 1 / max delays, £ 2,1,...,1-
chains / Cpmaz < p(J).

the sequence is feasible and that the associated schedule without machine idle time
satisfies the maximum delay precedence constraints.

Let A= {l1,...,a} and s(j) € Z¢ for all j € A be any instance of PARTITION
(see page 16). We construct a corresponding instance of 1 / max delays, k 2,1,...,1-

chains / Crer < p(J) in polynomial time as follows:
k=a+l;
Pz, =P, = |
Uz = Uz, = 3 Ljeas()i
pi=3(j—1), j=2,...,k
U; = Yieaigia () + 1L, 5=2,...,k
p. = 0.

Suppose there exists a subset A’ C A such that ¥;c0 3(j) = Tjea\n sli) =
15 eas(d). Let S={J; € {Jo,...,Jk}:s(j —1) € A’} and let T = {J, ..., Ji} \
S. The schedule illustrated in Figure 2.8 satisfies the maximum delay precedence
constraints and meets the overall deadline.

On the other hand, suppose there exists no subset A’ C A such that 3_;c 4 5(j) =
Y jeaar 8(j). Let o be a schedule that satisfies the maximum delay precedence

constraints and meets the overall deadline. Since uz, = uz, = 3 ¥ ;ea 3(j) and by

30

our hypothesis concerning the nonexistence of a partition for A, the sum of the
processing requirements of jobs from {Jz,. .., Ji} scheduled either between jobs J,,
and J;, or between jobs J;, and * must be less than 3" 4 3(j). Thus, some job
J; € {J2,...,Jk} must precede job J;, in schedule o. Of all such jobs, let J;: be the
job scheduled earliest. Now

o(x) = Ci(a) 2p(J\{JyD) = 3 s(i)+2>uj,

I€EA #) -1

which contradicts our assumption that schedule o satisfies the maximum delay prece-
dence constraints. Hence, there exists a schedule that satisfies the maximum delay
precedence constraints and meets the overall deadline if and only if there exists a

subset A’ C A such that 35;c 4 3(5) = Ljeaar s(j)- O

Proposition 2.7 not withstanding, there might exist a pseudo-polynomial time
algorithm for 1 / max delays, k 2,1,...,1-chains / Cpsz. Whether or not such an
algorithm exists is an open question. As a result of Proposition 2.7, the 1 / max
delays, k 2-chains / Cpa; problem is NP-hard. Whether or not 1 / max delays,
k 2-chains / Cpaz is NP-hard in the strong sense, as is 1 / min delays, k 2-chains /

Cmaz, 18 also an open question.

2.2.3 1 / max delays, k n,,1,...,1-chains / Cy,.

The 1 / max delays, k n,1,...,1-chains / Cy,,; problem is NP-hard, since, as
shown in Subsection 2.2.2, 1 / max delays, k 2,1,...,1-chains / C,,,; is NP-hard.
In this subsection, we prove that 1 / max delays, k ny,1,...,1-chains / Cp,. is in
fact NP-hard in the strong sense. The decision problem version of 1 / max delays,
kny,1,...,1-chains / Cpqz, which we refer to as 1 / max delays, k ny, 1,..., I-chains
| Cmaz < p(J), is defined as follows.

INSTANCE: Job set J = {J;,,...,Jz, } U {V2,..., i} U {#}, processing re-

quirement p; € Z§ V J; € J, precedence relation P on J of the form P =

31

p:ﬂl

utﬂl -l

Pz,

Figure 2.9: Instance of 1 / max delays, k n,;,1,...,1 -chains / Cnaz < p(J).

{<Jejsdejpy > =1...,m=1}U{< Jp, ,* >}U{< Jj,* >, j = 2,...,k},
maximum delays u;; for j = 1,...,n; and u; for j = 2,...,k, where each

maximum delay is either infinite or a nonnegative integer (see Figure 2.9).

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — 2§,
with o(7) > o(j’) implying o(j) > o(j') + p;») that satisfies the maximum
delay precedence constraints (i.e., 0(j’) — Cj(0) < u; V < J;,J; >€ P,
where Cj(0) = o(j) + p; V J; € J) and that meets the overall deadline (i.e.,
C.(o) < p(J))?

We now establish the computational complexity of 1 / max delays, & n,,1,...,1-

chains / Craz < p(J).

—

32

Proposition 2.8 The { / maz delays, k ny,1,...,1-chains / Cinar < p(J) problem

is NP-complete in the strong sense.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify
that the sequence is feasible and that the associated schedule without machine idie
time satisfies the maximum delay precedence constraints. Thus, 1 / max delays,
kny,1,...,1-chains / Cper < p(J) is in NP.

Let index set T' = {1,...,3t} and positive integers a1, ..., aa;, and b, with a; €
(36,3b) Vj € T and T;cra; = tb be any instance of 3-PARTITION (see page 23).
We construct 2 corresponding instance of 1 / max delays, k ny,1,..., l-chains /

Chmazr < p(J) as follows:
k=3t+1, ny =t
Pz; = Li=1...,ny

uy; =b, j=1,...,ny

pj = a5, j=2,...,k;
Uj = YieT,igi1 G +t—1, 3 =2,... k;
p. =0.

One can easily verify that this mapping from 3-PARTITION to 1 / max delays,
kni,1,...,1-chains / Cp,, < p(J) satisfies the computation time and instance size
requirements for a pseudo-polynomial transformation.

Suppose that T can be partitioned into ¢ disjoint subsets T3,...,T; such that
Yieriaj=bfort=1,...,t. Let S; = {J; € {J3,...,Jk}:a;_1 € T;} fori=1,...,¢
The schedule illustrated in Figure 2.10 satisfies the maximum delay precedence
constraints and meets the overall deadline.

Suppose, on the other hand, that T' cannot be partitioned into ¢ disjoint subsets
Ty,..., Ty such that ¥ e, a; = bfori=1,...,t. Let o be a schedule that satisfies

33

Jobsin S, | Jobs in S, J Jobs in S,

J . J . SRR Y .
*t | in any order | #2 | in any order " | in any order

Figure 2.10: Feasible schedule for constructed instance of 1 / max delays,
kny,1,...,1-chains / Cpaz < p(J).

the maximum delay precedence constraints and meets the overall deadline. Since
uy; = b for j = 1,...,n; and by our hypothesis concerning the nonexistence of a
partition for T, the sum of the processing requirements of jobs from {J,..., Ji}

scheduled either between jobs J;; and J;,,, for j = 1,...,n; — 1 or beiween jobs

J.

Zny

Jz, in schedule o. Of all such jobs, let J; be the job scheduled earliest. Now

o(x) = Ci(a) 2 p(J\{Jp}) = Y ai+t>uy,
€T igj-1

and * must be less than tb. Thus, some job J; € {Ja,...,Ji} must precede job

which contradicts our assumption that schedule o satisfies the maximum delay prece-
dence constraints. Hence, there exists a schedule that satisfies the maximum delay
precedence constraints and meets the overall deadline if and only if there exists a par-

tition of T into ¢ disjoint subsets T,...,T; such that Yjer,a; = bfori=1,...,t. O

2.3 Min and Max Delays Problems

The problems of Sections 2.1 and 2.2 arc special cases of minimum makespan
problems subject to both minimum and maximum delay precedence constraints.
Thus, min and max delays problems with all but the simplest precedence relation
are NP-hard.

In this section, we establish the complexity of two problems subject to both
minimum and maximum delay precedence constraints with precedence relation & 1-

chains. The first, 1 / min or max delays, k 1-chains / Cp, is solvable in polynomial

34

time. Recall that the ‘or’ of ‘min or max delays’ is an exclusive or so that [; =0 or
u; = ooforall j = 1,...,k. The second problem, 1 / min and max delays, k 1-chains
/ Cmsz, is NP-hard in the strong sense. In fact, even for k 1-chains, the problem of

determining whether or not a feasible schedule exists is strongly NP-complete.

2.3.1 1 / min or max delays, k 1-chains / C,..

For convenience, assume J = {J1,...,Ji} U {*}. Let S C {/1,...,Ji} consist
of those jobs for which I; > 0, and let T = {J;,...,Ji} \ S. Using the algorithm
below, we generate an optimal solution for the 1 / min or max delays, & 1-chains /
Crmaz problem by combining the solution of the 1 / min delays, &k 1-chains / Cpas
problem on jobs in S U {*}, and the solution of the 1 / max delays, k£ 1-chains /
Cmaz Problem on jobs in T U {*}.

Proposition 2.9 The following algorithm solves the 1 / min or maz delays, k 1-
chains / Cpor problem.

1 / min or max delays, k 1-chains / C,,,; Algorithm

Step 1: Solvethe 1 / max delays, k 1-chains / Cyqz problem on jobs in TU{#*} (see
Subsection 2.2.1). If there is no feasible schedule for this max delays problem,
then STOP: The instance of the min or max delays problem is INFEASIBLE.

Step 2: Solve the 1 / min delays, k 1-chains / Cpsr problem on jobs in S U {*}
(see Subsection 2.1.1). Let C be the optimal makespan.

Step 3: Combine the solutions from Steps 1 and 2 as in Figure 2.11. Gap [C —
p(J)}* is the minimum amount of idle time which must be inserted between
jobs in § and jobs in T so as to satisfy the minimum delay precedence con-

straints corresponding to jobs in S.

Proof: In Step 1, we either determine a feasible optimal schedule for jobs in
T U {*}, or we find a blocking subset of T, whence the instance of the min or max

delays problem is infeasible.

35

Jobs in S ordered as in Step 2 Jobs in T ordered as in Step 1 |*

...........

[C-p(d))+

Figure 2.11: Optimal schedule for the 1 / min or max delays, k£ 1-chains / Cpn,:

problem.

If [C — p(J)]* = 0, the schedule obtained in Step 3 includes no machine idle
time and hence is optimal. On the other hand, if [C — p(J)]* > 0, the schedule
obtained in Step 3 has makespan C, which, from Step 2, provides a lower bound on

the optimal makespan. O

Sorting the jobs in T' by release date and the jobs in S by precedence delay are
the algorithm’s most time consuming tasks. Therefore, the 1 / min or max delays,

k 1-chains / C,,.- problem can be solved in time O(k Ig k).

2.3.2 1 / min and max delays, k¢ l-chains / Cy,,.

In the previous subsection, we proved that 1 / min or max delays, k 1-chains /
Crmaz is solvable in polynomial time. In this subsection, we show that 1 / min and
max delays, k 1-chains / Cp,; is NP-hard in the strong sense. In fact, we prove the
stronger result that determining whether or not there exists a schedule that satisfies
the minimum and maximum delay precedence constraints, where the precedence
relation is k 1-chains, is strongly NP-complete. The min and max delays, k 1-chains

feasibility problem is formally defined as follows.

INSTANCE: Job set J = {Ji,...,Ji} U {*}, processing requirement p; € Z§ V
J; € J, precedence relation P on J of the form P = {< J;,x >, j =1,...,k},
minimum delays !; and maximum delays u;, where 0 < I; < uj, {; is a nonneg-

ative integer, and u; is either infinite or a nonnegative integer for j = 1,... k.

36

QUESTION: Is there a one-machine schedule for J (i.e., a function ¢ : J — Z§,
with o(j) > o(j) implying o(j) > o(j’) + p;:) tht saiisfies the minimum and
maximum delay precedence constraints {i.e., [; < o(x) - C;{7) < u;, where

Cilo)y=0(3)+p;Vi=1,...,k)?

We now establish the computational complexity of the min and max delays,

k 1-chains feasibility problem.

Proposition 2.10 The min and maz delays, k 1-chains feasibility problem is NP-

complete in the strong sense.

Proof: Given a schedule o : J — Z7, we can, in polynomial time, verify that o
satisfies the minimum and maximum delay precedence constraints. Thus, min and
max delays, k 1-chains feasibility is in NP.

Let T = {1,...,3t} and positive integers ay,...,as;, and b, with a; € (15, 3b)
for all j € T and T ;1 a; = tb be any instance of 3-PARTITION (see page 23). We
construct a corresponding instance of the min and max delays, k 1-chains feasibility

problem as follows:
k = 4¢;
pi=a;, l;j=0, uj = Tierizjai+t—1forj=1,...,3¢
pi=Lli=uj=(4t+1—-j)b+4t—jlorj=3t+1,... k
p. =0.

One can easily verify that this mapping from 3-PARTITION to the min and max
delays, k 1-chains feasibility problem satisfies the computation time and instance
size requirements for a pseudo-polynomial transformation.

By definition of [; and u; for j =3t + 1,..., k, any feasible schedule o satisfies
o(Jat41) < 0(Jae42) < -+ < o(Jk) < (%)

and

37

o(Jag2) = Catyi(0) = 0(J3t43) — Carya(o) = - -
= o{Ji) = Ci_i(0) = o(x) - Cilo) = b.

No job J; € {J1,...,J3} can precede job J3,; in any feasible schedule since
P3t+1 + 13¢+)'. = tb+t > Uj forj = 1, ,3t.

Now, since ?‘:lp,- = tb, then in any feasible schedule, the sum of the processing
requirements of jobs from {Ji,...,Ja} scheduled between jobs J; and J;,; must
equal b for j = 3t + 1,...,k — 1 and the sum of the processing requirements of
jobs from {Ji,..., Ja} scheduled between jobs J; and * must equal b. Thus, there
exists a feasible schedule if and only if there exists a partition of {J,...,J5} into
t disjoint subsets such that the sum of the processing requirements of the jobs in

each subset equals . D

To conclude this chapter, we summarize the computational complexity results
obtained thus far. The complexities of min delays, max delays, and min and max

delays problems are given in Tables 2.1, 2.2, and 2.3, respectively.

38

Table 2.1: Complexity classification of min delays, minimum makespan problems.

Precedence Relation | Complezity

k 1-chains O(klgk)
k2,1,...,1-chains | NP-hard
k 2-chains NP-hard in the strong sense

kny,1,...,l-chains | NP-hard in the strong sense

Table 2.2: Complexity classification of max delays, minimum makespan problems.

Precedence Relation | Complezity

k 1-chains O(klgk)

k2,1,...,1-chains | NP-hard

k 2-chains NP-hard
kny,1,...,1-chains | NP-hard in the strong sense

Table 2.3: Complexity classification of min and max delays, k 1-chains, minimum

makespan problems.

Type of Delays Complezity
min or max delays | O(klgk)
min and max delays | NP-hard in the strong sense

39

CHAPTER 3

1 / min and max delays,
k l-chains / =C; or rw;C;

In this chapter, we draw the line between easy and hard total completion time
and total weighted completion time problems with precedence relation k 1-chains.
In Section 3.1, minimum delay precedence constraints only are allowed, while in

Section 3.2, maximum delay precedence constraints only are allowed.

3.1 Min Delays Problems

Recall from Chapter 2 that associated with each feasible sequence is an active
schedule that schedules not only job *, but also each job as early as possible so
as to respect the sequence and to satisfy the machine capacity and the minimum
delay precedence constraints. Thus, 1 / min delays, k 1-chains / ¥ C; (¥ w;C;) is
the problem of finding, among all feasible sequences, a sequence that has associated

active schedule with minimum total (weighted) completion time.

3.1.1 1 / min delays, k 1-chains / ¥ C;

In this subsection, we show that 1 / min delays, k 1-chains / 3 C; can be
solved in time O(k®lg k). For ease of notation, assume J = {J/1,...,Ji} U {*}. Let
schedule MM be the schedule associated with the sequence obtained by ordering
jobs Ji,...,Ji by nonincreasing precedence delay. As proved in Subsection 2.1.1,

schedule MM has minimum makespan (i.e., minimum completion time for job *)

40

among all feasible schedules. Let schedule SPT be the schedule associated with the
sequence obtained by ordering jobs Jj, ..., Ji using the shortest processing time rule
(i.e., ordering the jobs by nondecreasing processing requirement), with ties broken in
favor of the job with the largest precedence delay. As shown by Smith [23], schedule
SPT solves the problem of minimizing total completion time for jobs Ji,..., Jk.

We now show that the makespans of the MM and SPT schedules bound the
optimal makespan for 1 / min delays, k 1-chains / 3~ C;.

Proposition 3.1 Let o* be an optimal schedule for 1 / min delays, k 1-chains /
S C;. Then C.(MM) < C.(c°) < C.(SPT).

Proof: Schedule MM has minimum makespan among all feasible schedules, so
C.(MM) £ C.(¢*). Suppose C.(¢*) > C.(SPT). Among all feasible schedules,
schedule SPT has minimum total completion time for jobs Jy,..., Ji, which implies

Z§=1 Ci{o*) 2 2;.-.1 C;(SPT). Thus,

Zk: Ci(0*) + Cu(c™) > i Cj(SPT) + C.(SPT),

1=1 J=1

a contradiction of the fact that o* is an optimal schedule. O

Let J,, — --- — J,, — * be any feasible sequence. The schedule, o, associated

with this sequence has
o(e1) =0,
olej) = 33zt pe, for j=2,...,k, and
o(*) = max;j=1,..k{o(e;) + pe, +1,}.
Hence,

C.(a) = max {C,(0) + L} +p-.

41

For simplicity, we assume p, = 0 since the total completion time of a schedule with
p. = ¢ > 0 differs from the total completion time of the corresponding schedule with
p- = 0 by precisely c.

Let C € {C.MM),C.(MM) + 1,...,C.(SPT)}. The following proposition

characterizes those schedules that have makespan at most C (see [24]).

Proposition 3.2 If o is any schedule, then C.(0) < C if and only if o mcets the
individual job deadlinesd; =C ~; forall j = 1,...,k.

Proof: If C.(0) = max;j=,..+{Cj(c) + ;} <, then
Ci(c) ST =l;=d;forallj=1,...,k.
IfCi(0) <d; =C —1l;forall j = 1,...,k, then

Cul0) = max (Ci(o) + 5} < T. 0

Proposition 3.2 implies that if we can solve 1 / d; / Z;;, Cj, the problem of minimiz-

ing the total completion time of jobs Ji,..., Ji subject to individual job deadlines,
then we can solve 1 / min delays, k 1-chains / J C; by varying C from C.(M M) to

C.(SPT) (or from C.(SPT) down to C.(MM)).

We now present an algorithm for 1 / d; / }:;?:1 C; first proposed by Smith [23].

Proposition 3.3 The following algorithm solves the 1 /d; / T %, C; problem.
1/d; / X5, C; Algorithm

Step 1: Number jobs J,....,Ji such that p; > --- > pi. Sort jobs Ji,...,Ji in

order of nonincreasing deadline.
Step 2: Ue {Jl""ﬂ]k}; T""‘Z‘I;:lpj'

Step3: V« {J;€U: d; >T}. HV =0,STOP: The instance is INFEASIBLE.

42

Figure 3.1: Obtaining schedule 7 from schedule o.

Step 4: J,, « argmaz{p; : J; € V}. Break ties in favor of the job with the

largest deadline.
Step 5: Cn(o) =T (o(m) —T —pn);i U~ U\{Jn}; T~ T — pm.
Step 6: If T > 0, then go to Step 3. Otherwise, STOP: Schedule ¢ is OPTIMAL.

Proof: Thel /d; / %, C; algorithm terminates with either V =@ or T = 0.
In the former case, d; < T = ¥ 5;ev p; for all J; € U. Hence, in any schedule, the
job in U scheduled latest exceeds its deadline and the instance is infeasible. In the
latter case, the output schedule is feasible since, at each iteration, we scheduled next
to last a job which, when so scheduled, met its deadline.

To complete the proof, we need to show that the schedule produced by the
algorithm is optimal. Let o be the schedule produced by the algorithm and let
Je; = -+« — J., be the corresponding sequence. Let o* be any optimal schedule for
1/d;/ Z;;, C; and let J,; — «-- — J.: be the corresponding sequence. Define
b= argmazj=y,. . x{j: Je; # Je;}. "Assume such a b exists since, if not, then o = o*
and we are done. By definition of b, 0*(es) < o*(e}) (i.e., job J., is scheduled earlier
in schedule o* than is job Ji;). We now prove, through a series of three claims,
that the schedule * obtained by interchanging jobs J., and J; in schedule o* (see
Figure 3.1) meets the individual job deadlines and has total completion time no

greater than the total completion time of schedule o*.

43

Claim 3.3.1 pcb 2 pe;.

Proof: By definition of b, job Je; was not scheduled in schedule o prior to the
iteration in which job J,, was scheduled. Now, C,,(¢) equals T in the iteration in
which job J., was scheduled in schedule ¢. Since C, () = C¢;(07) and Ce;(0*) <
E,;, then He; is greater than or equal to T in the iteration in which job J,, was
scheduled in schedule #. Thus, both jobs J., and Je; must have been in V in the
iteration in which job J., was scheduled in schedule o. Job J., was selected over job

Jeg, which implies p,, 2 pe;. O

Claim 3.3.2 Schedule 7 is a feasible schedule.

Proof: We consider each deadline constraint in turn.
1. C,(7) = C¢;(O") = ch(a) < zcb,
2. 03;(?') < C,;(a") < E,;.

3. The completion time of each job scheduled either before job J., or after job
Jep in schedule o* is unchanged from schedule 0* to schedule 7*. Hence, these

“initial” and “terminal” jobs meet their deadlines in schedule 7.

4. For each job J., scheduled between jobs J., and Jeg in schedule o*,
C.,(o°) = Ce,‘(a.) = Dey + Py -

Since, by Claim 3.3.1, —p., + Pe; <0, then C (7°) < Ce,(0"). Thus, these

“middle” jobs meet their deadlines in schedule 7. O

44

Claim 3.3.3 Tf_, C;(z*) < Tk, Cj(0*).
Proof: We consider each completion time in turn.
1. Ceb(a") + C’,;(v‘) = Ce;(d") + C,,(a‘) - [pe,’ - Pe;]+ S Ceb(d') + Ce;(d').

2. The completion time of each job scheduled either before job J., or after job

Je; in schedule ¢* is unchanged from schedule o* to schedule 7*.

3. The completion time of each job scheduled between jobs J., and Je; in schedule

o* is reduced by p., — Peg > 0 from schedule ¢* to schedule 7. O

Claims 3.3.2 and 3.3.3 imply that 7 is an optimal schedule. Starting with
optimal schedule 3, we can repeat the process of identifying the largest index, if
any, in which the sequences corresponding to schedules o and 7 differ. We can
then interchange a pair of jobs in schedule to obtain a new optimal schedule.
Continuing in this manner, we will eventually obtain an optimal schedule that does

not differ from schedule ¢. O

We now show that the 1 / d; /):le C; algorithm can be implemented in time
O(klg k) using a specialized data structure known as a 2-3 tree. A 2-3 tree is a tree
in which every vertez which is not a leaf has 2 or 3 children, and all leaves have the
same depth [1]. To our knowledge, the proof of the following widely cited complexity

result (see [13] and [25] for example) appears nowhere else.
Proposition 3.4 The 1 /d; /):;‘al C; algorithm requires time O(klgk).

Proof: Steps 1 and 2 require time O(klgk) and O(k), respectively. Steps 3-6
are repeated k times. Steps 5 and 6 require constant time per iteration. If V is
represented by a 2-3 tree by assigning the jobs to the leaves of the tree in increasing
number order from left to right, then Step 4, which consists of identifying the longest
(i.e., lowest numbered) job in V' (and deleting that job from V') requires time O(lIg k)

45

per iteration (see [1]). Step 3 consists of identifying the jobs in V and inserting each
job in V into the 2-3 tree. Observe that each job is inserted into V only once and
remains in V until the job is scheduled. Hence, inserting jobs into the 2-3 tree
requires time O(k Ig k) over all iterations (reference [1]). Notice also that jobs enter
V in order of nonincreasing deadline. The task of identifying the jobs in V can be
accomplished in linear time over all iterations using a pointer together with the list
of jobs sorted according to deadline from Step 1. Therefore, the 1 / d; / T%_, C;
algorithm can be implemented in time O(klgk). O

In Step 5 of the 1 / d; / 5, C; algo-iunm, let slack[m] = T —d,,. By definition
of V in Step 3, slack[j] > 0 for j = 1,...,k. Define s = minj=y,..4 slack[j]. The
following proposition limits the number »f completion times for job * which must

be considered in solving the 1 / min delays, k 1-chains / 3~ C; problem.

Proposition 3.5 The schedule that solves 1 /d; = C —1l; / ¥%_, C; also solves 1

=1

/Zj-“—C-'lj/Ef:lC,- forallCe{C—-s,C~s+1,...,C}.

Proof: For all C in the given interval, the order of job selection is unaffected by
changes in the individual job deadlines. O

As a result of Proposition 3.5, the next completion time for job * to consider after
CisC—-s—1.
We now present the main result of this subsection, a polynomial algorithm for 1

/ min delays, k 1-chains / 3~ C;.

Proposition 3.8 The following algorithm solves the 1 / min delays, k 1-chains /
S C; problem.

1 / min delays, k 1-chains / 3~ C; Algorithm

Initialization: Compute CMM and CSPT. If CMM = C5PT then STOP: The SPT
schedule is OPTIMAL. Otherwise, C « C5FT; Incumbent — nil. Compute
deadlines d; = C — ; for j = 1,... k.

46

Step 1: Solve the 1 / d; / 3 C; problem on jobs Ji,...,Ji. Compute s =

min;1,. x slack[j] and let o(¥) = C — s.

Step 2: Ifschedule o has total completion time 'ess than the total completion time
of the incumbent solution, then replace the incumbent solution with schedule

ag.

Step 3: C « C—s—1. IfC < CMM then STOP: The current incumbent solution
is OPTIMAL. Otherwise, d; «— d; —s—1for j=1,...,k. Go to Step 1.

Proof: The correctness of the 1 / min delays, k 1-chains / 3 C; algorithm follows
immediately from Propositions 3.1, 3.3, and 3.5. We should point out that each 1
/ d; / 3 C; instance encountered is feasible since schedule MM meets the deadlines
= CMM _ |, for j = 1,...,k, which implies schedule MM meets the deadlines

d;
dj=C ~ljforj=1,...,k and for any C > CMM. O

Before analyzing the complexity of the 1 / min delays, k 1-chains / ¥ C; algo-

rithm, let us consider an example. For the instance shown in Figure 3.2,
CMM) =111,
¥%1 Ci(MM) = 151,
T Ci(MM) = 262,
C.(SPT) =121,
?=, C;(SPT) =123,
and
> C;(SPT) = 250.

One optimal schedule, o*, corresponds to the sequence J; — J; = J3 — J4 — Jg —

Js — =, For schedule o*,

47

1 3 6 10 15 18

Figure 3.2: Instance of 1 / min delays, k 1-chains / ¥ C;.

C.(o*) = 116,
?__.1 Cj(a‘) = 126,
and

> Ci(0*) = 242.

k
=1

This example illustrates the tradeoff between minimizing 3"7_, C; and minimizing C.
in solving 1 / min delays, k 1-chains / 3~ C;. An optimal schedule is not necessarily a
schedule that minimizes either 2};1 C;j or C.,, but instead is a schedule that balances
the two objectives.

A schedule o is Pareto optimal with respect to the objective functions 2;;1 C;

and C, if there exists no feasible schedule » with
2;:1 Cj(‘ﬂ') S 2;.—.1 Cj(U) and C"("r) S C.(G’),

where at least one of these two inequalities is strict. Clearly, the optimal schedule
for 1 / min delays, k 1-chains / ¥ C; is Pareto optimal. The remainder of this
subsection, which follows closely the exposition in Hoogeveen and van de Velde [13],
consists of showing that the complexity of the 1 / min delays, k 1-chains / ¥ C;
algorithm is O(k® 1g k) by first proving that the schedules produced by the algorithm
are Pareto optimal and then showing that the number of Pareto optimal schedules

produced by the algorithm is O(k?).

48

Proposition 3.7 The ! / min delays, k 1-chains /3" C; algorithm produces Pareto
optimal schedules with respect to 2;9:1 C; and C..

Proof: Let o be any schedule produced by the algorithm. We must show there

exists no feasible schedule © with

Cj(x) = T, C5(o) and C.(r) < Cu(a),

]-l
2. Th, Gj(m) < T4y Cy(0) and Cu(r) = Cu(a), or
3. ©5.1Ci(r) < T4, Cj(0) and Cu(x) < Cu(0).

Schedule o (sans o(*)) solves 1 / d; =C —1; / Z;‘_l C; for some C = C.(0) +s.
By Proposition 3.5, o (sans o(*)) also solves 1 / d; = C.(0)—1; / T%_, C;. Now, by
Proposition 3.2, a schedule satisfies C. < C.(o) if and only if that schedule meets

1=1

the deadlines d; = C.(o) — I; for j = 1,...,k. Hence, there can exist no feasible

schedule = with
i1 Ci(7r) < £%., Cj(o) and C.(x) < Cu(0),

which establishes points 2 and 3 above.

Suppose there exists a schedule with
521 Cj = £}=1 Ci(0) and C. < C.(0).

Among all such schedules, let o* be one with smallest C.. Let J,, — --- — J,, — *
and J;; — ---J;; — * be the sequences corresponding to schedules o and o*,
respectively. Define b = argmazj,.x{j: Je, # J.,;_}. As in Claim 3.3.1, pe, 2 pe;.

Suppose pe, > pe;. Then, as in Claims 3.3.2 and 3.3.3, we can show that the
schedule obtained by interchanging jobs J., and Je; in schedule o* meets the dead-
lines d; = C.(0) — I; for each j = 1,...,k and has T-%_, C; less than Z]_l (o) =
Zf.__, C;(o), a contradiction of the fact that schedule o solves 1 / d; = C.(o) — {; /
Zf=1 Cj. Thus, pe, = pe;-

49

By choice of job J,, over job J; in the algorithm,
3% > E‘; = U— Ieg, _>,U- lc; = lc;, < le;.

Now, pe, = pe; and [, < I, imply that the schedule obtained by interchanging jobs
Je, and Jes in schedule o* has }:f=1 C; equal to -¥_, C;(c*) and has C, less than
or equal to C.(¢*). By definition of schedule o°, this new schedule has C, equal to
C.(o*).

Repeating this argument, we see that schedule o* can be transformed into sched-
ule o without increasing the total completion time for jobs Ji, ..., Ji, a contradiction
of our assumption that C.(0*) < C.(¢). Hence, there can exist no feasible schedule

7 with

$51 Ci(7) = £5., Ci(e) and C.(7) < C.(o),

J=1

which establishes point 1 and completes the proof. O

For each feasible schedule ¢ and for each pair of jobs J; # J; from {Ji,...,Jk}x
{/1,...,Jk}, let the indicator function §;j(c) be defined by

5:(0) = 1, if Ci(o) < C;{(c) and p; > p;
7= 0 otherwise.
We refer to the interchange of jobs J; and J; in schedule o as a positive interchange
if the total completion time for jobs Ji,.. ., Ji of the resultant schedule is less than

*_1Ci(o). A positive interchange is synonymous with 6;;(c) = 1. The interchange
of jobs J; and J; in schedule o is neutral if the total completion time for jobs
Ji,...,Ji of the resultant schedule equals):f=1 C;(o), which occurs if and only if
pi = p;-

For each feasible schedule o, let A(o) = 3 .4;6i(¢). Note that 0 < A(s) <

3k(k — 1) for all feasible schedules o. The following lemma relates the A functions
of two feasible schedules, one of which can be obtained from the other via a positive

interchange.

50

Table 3.1: Possible values for é;/(c), é;(¢), é;i(r), and é;(n).

Relationship of p; and p; to p; | du(o) | &ij(o) | bju(m) | bui(m)
pn<p;<pi 1 0 1 0
Pt =p; < pi 1 0 0 0
Pi <ot < pi 1 1 0 0
p; < piL = pi 0 1 0 0
pi<pi<pm 0 1 0 1

Lemma 3.8 [f schedule © can be obtained from schedule o through a positive inter-
change, then A(7) < A(o).

Proof: Suppose schedule 7 can be obtained from schedule o by interchanging
jobs J; and J;, where p; > p;. The only §’s which are or might be affected by tl.c
interchange are 6;;, &, &1, 6;;, and &;;, where job J; is any job scheduled between
jobs J; and J; in schedule o.

The change in the A function from schedule ¢ to schedule = is given by

bij(0) — bi;(7) + ;[(5-'1(0) + &i5(a)) — (6;1(7) + &ii(m))]-

Clearly, 6;;(¢) = 1 and 6;;(n) = 0.
Table 3.1 shows that for all jobs Ji,

bu(o) + 6ij(a) 2 8j(x) + bu(x),
which completes the proof. O
The next proposition relates the A functions of two schedules produced by the
1 / min delays, k 1-chains / ¥ C; algorithm.

Proposition 3.9 If o and © are any two schedules produced by the 1 / min de-
lays, k 1-chains / T C; aigorithm, where, without loss of generality, Zf__.l Ci(o) <
Tk, Ci(rr), then A(o) < A(x).

51

Proof: We show that schedule o can be obtained from schedule 7 using only
positive and neutral interchanges. Let J,, — --- — J,, — * and Je; —
Je; — * be the sequences corresponding to schedules ¢ and =, respectively. Define
b=argmazjy, 4{j: Je, # Jc;}-
By definition of b, job JeL was not scheduled in schedule o prizcs to the iteration in
which job J,, was scheduled. Because ¢ and = are Pareto optimal, then Zf:, C,o) <
%1 Cj(r) implies C.(¢) > C.(x). Now, T in the iteration in which job J.; was
scheduled in schedule = equals T in the iteration in which job J,, was scheduled in
schedule 0. Since C.(7) — Ie:, is grea.er than or equal to 7T in the iteration in which
job Je}. was scheduled in schedule 7 and C.(r) < C.(o)}, then C.{c) — IC; is greater
than or equal to T in the iteration in which job J,, was scheduled in schedule o.
Thus, both jobs J., and Jc; must have been in V in the iteration in which job J,,
was scheduled in schedule o. By choice of job J,, over job Je; in the algorithm,
Pey 2 Pe.- Thus, the interchange of jobs J,, and JCL in schedule 7 is either positive
or neutral.
Repeating this process, we will eventually obtain schedule o. Since Ej‘:‘ Cila) <
Y51 Cj(7), then at least one of the positive or neutral interchanges must have been

positive. The result now follows from Lemma 3.8. O

We are finally prepared to establish the running time of the 1 / min delays,
k 1-chains / ¥ C; algorithm.

Proposition 3.10 The ! / min delays, k 1-chains / 5 C; problem is solvable in
time O(k®1g k).

Picof: Proposition 3.7 together with the fact that 0 < A(o) < 1k(k — 1) for all
feasible schedules ¢ implies the number of schedules produced by the algorithm is
O(k*). The 1 / min delays, k 1-chains / 3 C; algorithm requires time O(k®lg k)

overall, since, by Proposition 3.4, each iteration requires time O(k lgk). O

In [13], Hoogeveen and van de Velde actually considered a more general problem
than 1 / min delays, k 1-chains / T~ C;. Let f,(C;) denote the cost of completing job
J; at time C; for j = 1,...,k. Assume f; is nondecreasing in C, for j = 1,... k.
Define fmar: = maxj=i, .k f;(C;) and pnar = max,z;_ xp,- Hoogeveen and van
de Velde proved that 1 / / F(f,_l Cj, fmaz) is solvable in time O(k® min{k,lgk +
1g Pmaz}) for any function F that is nondecreasing in }:f:, C; and fia:-

Curiously enough, 1 / min delays, k 1-chains / ¥ C;, a precedence constrained
scheduling problem, is a special case of 1 / / F’()::',-‘=l Cj, fmaz), 2 problem not
involving precedw.ce constraints. Let f;(C;) = C; +{; for j = 1,...,k and let

F(E‘:] Cja fmar) = z;‘:l Cj + fma;-. Then,

F(Zf:l Cji fmaa:) = f.—.] Cj + maxj:l.....k{cj + 1,}
= z,k=l CJ + C..

3.1.2 1 / min delays, k 1-chains / ¥ w;C;

In the previous subsection, we showed that the total completion time problem 1
/ min delays, k 1-chains / 3~ C; is solvable in polynomial time. In this subsection,
we show that the closely related total weighted completion time problem is NP-hard.
The decision problem version of 1 / min delays, k 1-chains / T~ w;C;, which we refer

to as 1 / min delays, k 1-chains / T w;C; <Y, is defined as follows.

INSTANCE: Job set J = {Ji,...,Ji} U {*}, processing requirement p; € Z}
and weight w; € Z§ V J; € J, precedence relation P on J of the form
P = {< J;,* >, j = 1,...,k}, nonnegative integer minimum delays {; for

7 =1,...,k, and a positive integer Y.

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — Z¢,
with o(j) > o(j') implying o(j) 2 o(;') + p;) that satisfies the minimum
delay precedence constraints (i.e., o(*) — C;(0) 2 {; for j = 1,...,k, where
Ci(e) = a(j) + p; V J; € J) and such that the sum, taken over all J; € J, of

w;Cj(0) is Y or less?

53

We now prove that the decision problem version of 1 / min delays, & 1-chains /

> w;C; is NP-complete.

Proposition 3.11 The ! / min delays, k 1-chains / 3 w;C; <Y problem is NP-

complete.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify
that the associated schedule satisfies the minimum delay precedence constraints and
has total weighted completion time Y or less. Thus, 1 / min delays, & l-chains /
Y w;C; £Y isin NP.

Let index set A = {1,...,a} and size s(j) € Z{ for all j € A be any instance
of PARTITION (see page 16). We construct a corresponding instance of 1 / min
delays, k 1-chains / 3 w;C; <Y in polynomial time as follows:

k=a+1;
pi=wij=3(j), l;=0,=1,....,k=1;
pe=1, we =1, k=3 ea3();

P. =0, we =1

Y = Tigjckea $(3)3(K) + I Tjea s(i) + 3,

With respect to jobs Ji,...,Jk.1, any nonpreemptive schedule without machine
idle time is optimal and has value T1¢;<k<a 3(7)s(k). Inserting the unit-time job J;
in a schedule for jobs Jy,..., Ji_1 increases the contribution of jobs Ji,...,Ji-1 by
the sum of the processing requirements of jobs from {Ji,...,Ji_1} completed after
job Ji.

Suppose there exists a subset A’ C A such that ¥;ea 8(J) = Tjeaa sli) =
15 icas(y) Let S={J; € {,...,Jk-1}:j€ A} and T = {Ji,.. s Jx-1}\S. The
schedule illustrated in Figure 3.3 satisfies the minimum delay precedence constraints

and has total weighted completion time equal to Y.

54

Jobs in S in any order Ji Jobs in 7" in any order *

Figure 3.3: Feasible schedule for constructed instance of 1 / min delays, k I-chains

[ZwiC; LY.

On the other hand, suppose tiere exists no subset A’ C A such that ¥ ¢ 4 3(j) =
Y jea\ar 8(7). Then, in any schedule that satisfies the minimum delay precedence
constraints, the sum of the processing requirements of jobs from {Ji,...,Ji_,} com-
pleted after job J is either strictly less than or strictly greater than % Yieasy)

Suppose this sum of processing requirements is strictly less than %Zje 43(7)-
Figure 3.4 illustrates an arbitrary schedule that satisfies the minimum delay prece-
dence constraints and for which the sum of the processing requirements of jobs from
{J1,- -+, Jk=1} completed after job Ji equals 1 T4 3(j) ~ A for some A > u. The
contribution of jobs Ji,...,Jk_1 to the value of this schedule is given by

> s()slk) +5 X s() - A

1<<k<a j€A

The contributions of jobs Jx and * are given by

11 .

and

1 . .
=Y s+ A+pe+ =3 s(j)+A+1,
2 JEA JEA

respectively. Summing these contributions, we see that this schedule has total

weighted completion time Y + 1A > Y.

59

Jk *

12, eatli)+o 13, eatli)-0 a

Figure 3.4: Schedule with sum of processing times of jobs from {J,...,Js_;} com-

pleted after job Ji less than 3 T ;¢4 8(5).

Now, suppose the sum of processing requirements of jobs from {Ji,...,Ji_;}
completed after job J; is strictly greater than 1 ¥ ;e4 3(7). Figure 3.5 shows an
arbitrary schedule that satisfies the minimum delay precedence constraints and for
which the sum of the processing requirements of jobs from {Ji,..., k-1 } completed
after job Ji equals ;3 ;e48(j) + A for some A > 0. The contribution of jobs
J1y- .., Je—1 to the value of this schedule is given by

Z s(7)s(k) + % Z s(7)+A.

1<5<k<a JEA

The contributions of jobs Ji and * are given by

1.1 .
5('2'%3(1) -A+1)

and

Yos() 4+ =) s(j)+1,

JEA J€EA

respectively. Summing these contributions, we see that this schedule also has total
weighted completion time equal to Y + %A > Y. Thus, there exists a schedule
that satisfies the minimum delay precedence constraints and has total weighted

completion time Y or less if and only if there exists a partition of {Ji,...,Jk_1}

56

Jk *

§ T, eatli)-0 E T easlil+a
Figure 3.5: Schedule with sum of processing times of jobs from {Ji,...,Jk-1} com-

pleted after job J, greater than } ;¢4 s(4)-

into two disjoint subsets such that the sum of the processing requirements of the

jobs in each subset equals 1 3";c 4 3(j). O

Proposition 3.11 does not preclude a pseudo-polynomial time algorithm for 1 /
min delays, k£ 1-chains / 3" w;C;. Whether or not such an algorithm exists is an

open question.

3.2 Max Delays Problems

Removing idle time from a schedule that satisfies the maximum delay precedence
constraints results in a feasible schedule with smaller total completion time and
no larger total weighted completion time. Thus, 1 / max delays, k£ 1-chains /
3 C; (X w;C;) is the problem of finding, among all schedules without machine idle
time that satisfy the maximum delay precedence constraints, a schedule that has

minimum total (weighted) completion time.

3.2.1 1 / max delays, k 1-chains / & C;

In Subsection 3.1.1, we showed that 1 / min delays, k 1-chains / 3~ C; can be
solved in time O(k3lg k). In this subsection, we show that the corresponding max
delays problem is NP-hard in the strong sense. The decision problem version of 1
/ max delays, k 1-chains / T C;, which we refer to as 1 / max delays, k 1-chains /
.C; €Y, is defined as follows.

a7

INSTANCE: Job set J = {1,...,Ji} U {#}, processing requirement. p, € Z ¥
J; € J, precedence relation P oon J of the forin PP = {< J,, ¢ >, j =1,... k),
maximuin delays u; for 3 = 1,...,k, where cach maximum delay is either

infinite or a nonnegative integer, and a positive integer Y.

QUESTION: Is there a one-machine schedule for J (i.e., a function o : J — Z},
with o(3) > o(3') implying a(3) 2 o(j')+p;-) that satisfies the maximum delay
precedence constraints (i.e., a(+) — Cj(0) < u;, where C)(0) = o(j)+p, V) =

l,...,k) and such that the sum, taken over all J, € J, of C;(a) is ¥ or less?

We now show that 1 / max delays, k l-chains /| S C, < ¥V is strongly NP-
complete. The proof is adapted from and follows closely the complexity proof for
2 / | £ C;, the problem of minimizing total completion time in a two-machine

flowshop, in Garey, Johnson, and Sethi [11].

Proposition 3.12 The ! / maz delays, k 1-chains / 3 C; < Y problem is NP-

complete in the strong sense.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verily
that the associated schedule without machine idle time satisfies the maximum delay
precedence constraints and has total completion time Y or less. Thus, 1 / max
delays, k 1-chains / 3 C; < Y is in NP.

The problem we use for the reduction is 3-PARTITION (see page 23). We start
with t + 1 unit-length jobs. These jobs have associated maximum precedence delays
such that, if they are the only jobs to be scheduled, then they can be scheduled in
such a manner as to leave ¢ identical slots. We add other jobs having maximum
delays large enough so that the associated maximum delay precedence constraints
are always satisfied and exactly fill the slots with these jobs and meet the target
total completion time if and only if the 3-PARTITION instance has a solution.

Let T = {1,...,3t} and positive integers ay,...,ay, and b, with a, € (1b,1b)
for all j € T and 3 ¢ra; = tb be any instance of 3-PARTITION. We construet a

corresponding instance of 1 / max delays, k 1-chains / 3° (', as follows:

z=3th+1;
ve=z+3th+tz+ LN 2(b+1);
c=zv+b+1;

z=2(t+2)c+v;

k=t+14+v+1iz;

ps, = 1, us, =(t—-j)c+zv,) =0,1,...,4

Px, = T, UX, =tc+zv+l,j=1,...,v;

pvi, =0, uy,; = tctzv+1, i=1,...,tj=1,...,2—3;
pw, = v + a;, uw, =tc+zv+1, j=1,...,3¢

p»=0;

Y=8+X+2Z+tc+zv+1, where

§=Yto(jc+1)

X = 5%, (te+1+ jz), and

7= 3ib+ i, Gy +ic+ 1)
=3th+tz + L5 . g(b+ 1) + El5H o,

Bearing in mind that Y, the largest number produced under this mapping from 3-
PARTITION ¢c 1 / max delays, k 1-chains / £ C; £ Y, is bounded by a polynomial
in t and b, one can easily verify that the mapping satisfies the computation time

and instance size requirements for a pseudo-polynomial transformation.

59

We refer to jobs Jg, for j = 0,1,...,t a3 ‘S’ jobs. Similarly, we refer to jobs with
X, V, and W subscripts as ‘X,’ ‘V,” and ‘W’ jobs, respectively. We refer to the V
and W jobs collectively as ‘7" jobs.

Suppose that T can be partitioned into ¢t disjoint subsets Ty, ..., T, such that
Yierna; = bflori=1,...,t. Assume T; = {g(3,1),9(1,2),9(3,3)} for ¢ = 1,...,1
and consider the schedule, o, illustrated in Figure 3.6, wherein jobs are identified
by their subscripts only.

We first show that schedule o satisfies the maximum delay precedence con-
straints. The sum of the processing requirements of the Z jobs scheduled between

jobs Js, and Js,,, in schedule ¢ is given by
(z=3)v+Bv+bd)=zv+b=c~- 1.
for j=0,1,...,t — 1. Now,
o(*) - Cs,(0) = (t — j)c + zv = ug,

for j =0,1,...,¢, so schedule o satisfies the maximum delay precedence constraints
corresponding to the S jobs. Any schedule without machine idle time satisfies the
maximum delay precedence constraints corresponding to the X and 7 jobs since
tc + zv + 1 = p(J). Hence, schedule o satisfies the maximum delay precedence
constraints.

We now verify that schedule ¢ has total completion time Y or less. One can
easily show that T} _oCs,(0) = S, Ti=1Cx,(0) = X,and C.(0) = tc+ zv+ 1. The

total completion time of the Z jobs in schedule o is given by

t—-t 2
Z - Z [z (]U + ic + l) + 309(.'.“'” + 2ag(,'+|'2) + (lg(.‘_',,';;)],

=0 j=1

which i3 less than

t—1 3
Z=3Y [N (Gv+ict1)+3) a;
)=l

=0 ;=1

60

c [

(50|Vl |v Wy(l.I)IWg(l.2)le(l.3)TSlIV] [V IWo2)Wo2,2fWo2.3)] Sa| =+ Sel X -+ | X,] ¥]
o ———p—

(2=3) V jobs (2-3) V jobs

Figure 3.6: Feasible schedule for constructed instance of 1 / max delays, k 1-chains

/ZCJ'<Y.

Therefore,
> Ci(o) =S+X+Z+tc+av+1<yY

and schedule ¢ is feasible for 1 / max delays, k 1-chains / §~ C;.

We now show, through a series of six claims, that if there exists a “good” sched-
ule, that is, a schedule that satisfies the maximum delay precedence constraints and
has total completion time Y or less, then there exists a partition of T into ¢ disjoint
subsets T1,...,T; such that 3,1, aj = bfort = 1,...,t. The first and second claims

address the relative ordering of the S and X jobs.

Claim S If there ezxists a good schedule, then there ezists a good schedule that
satisfies

a(So) < o(51) < -+ < a(8Sy). (3.1)

Proof: Jobs Js,,Js,,...,Js, can be interchanged in any good schedule so that job
Js, precedes job Js,,, for j =0,1,...,¢ ~1 without affecting feasibility or value. O

Claim X1 If there ezists a good schedule, then there exists a good schedule that
satisfies

a(X1) < - < a(X,). (3.2)
Proof: Jobs Jy,,...,Jx

Jx, precedes job Jx,,, for j =1,...,v — 1 without affecting feasibility or value. O

can be interchanged in any good schedule so that job

61

The third claim gives a lower bound for the start time of the X jobs in some
good schedule that satisfies (3.1) and (3.2).

Claim X2 If there erists a good schedule that satisfies conditions (3.1) and (3.2),

then there exists a good schedule that satisfies these conditions that also satisfies
o(X;)2tct+lforj=1,...,v. (3.3)

Proof: Among all good schedules that satisfy (3.1) and (3.2), let schedule ¢ be
one with minimum total completion time. Suppose that schedule o does not satisfy
(3.3), so that o(X;) < tc+ i for some . Since px, > tc+1 foreachj=1,...,v and
since o satisfies (3.2), then ¢ must be equal to 1.

We now show that the jobs scheduled after job Jx, in schedule o can be re-
ordered without violating the maximum delay precedence constraints. Observe that
reordering affects neither the start time of job * nor the completion time of job Js,
for any job Js, scheduled before job Jx, in schedule g. Since o satisfies (3.1), then
the sum of the processing requirements of jobs scheduled between jobs Js, and * in
the reordered schedule is at most

p(J) - px, - iops... =tctzv—z—j

for any job Js, scheduled after job Jx, in schedule 0. Now,

us, —[te+zv—z-jl=(t —jlc+tzv—[tc+ zv -z — j}
=—jc+z+]
=—jc4+2(t+2)c+v+
=(2t+4—-j)c+v+j
2(t+4)e+v+y
> 0.

Hence, the reordered schedule satisfies the maximum delay precedence constraints.
Since the jobs scheduled after job Jx, can be reordered and since o is a minimum

total completion time schedule, then the jobs scheduled after job Jx, in schedule

62

o must be ordered by nondecreasing processing requirement. In particular, jobs
sz, ey JIx

px, =z, then

must be scheduled last before job * in schedule o. Since o(X,) >

v

ZCx,(a)2X=z+2(tc+l+jx)=/\>—tc—l.

=1 =2

The start time of job * in schedule o is at least p(J) = tc + zv + 1. Thus
Cs;(0) 2 p(J) —us, = je+1
for each j = 0,1,...,t — 1. Job Js, must be scheduled after job Jx, in schedule ¢
since, otherwise,
o(X1)<tc+1 = a(X) Ltc = Cs(0)<tc =

o(¥) = Cs(c) 2 p(J)—tc=zv+1 > ug,,

a contradiction of the fact that ¢ is a good schedule. Hence, Cs,(0) 2 p(X1) =z

and

Ti0Cs(0) 28 =Tih(e+1) + 2
=S5 ~(tc+1)+2
=S+tctdctuv—1
>S+tc+1+v.

By treating the Z jobs as jobs each having processing requirement v scheduled

one after the other, we obtain the lower bound

for the total completion time of the Z jobs in schedule . Note that

t(t—1)

Z=7Z-3tbh—tz— 5

~z(b+1).

63

Thus,

Y Ci(e) 28 +X+Z+tc+azv+1
>S+X+Z+te+zv+lttetltv—te—1—3th—tz — LU (b4 1)
=3+X+Z+tc+:w+1+v——3tb—tz—5‘—i'—‘l-z(b+l).

Now, v > 3tb+tz+'—(‘;—ll-z(b+l),so Y. Ci(0) > Y, a contradiction of the fact that

o is a good schedule. Therefore, schedule o must satisfy (3.3). O

The fourth claim specifies the start time of job Jx, in some good schedule that
satisfies (3.1)-(3.3).

Claim X3 If there ezists a good schedule that satisfies conditions (3.1)-(3.3), then

there exists a good schedule that satisfies these conditions that also satisfies
o(X;1) =tc+1 and o(j) < tc+1 for all S and Z jobs J;. (3.4)

Proof: Among all good schedules that satisfy (3.1)-(3.3), let schedule o be one
with minimum total completion time. Suppose that o does not satisfy (3.4), so
that, since o satisfies (3.3), (X)) > tc + 1. Note that the processing requirements
of the S and Z jobs sum to tc+ 1. Since o satisfies (3.2), then jobs Jx,,...,Jx, are
schedﬁled after job Jx, in schedule 0. Thus, o must include machine idle time prior
to time o(X,), a contradiction of the fact that ¢ is a minimum total completion

time schedule. Therefore, & satisfies (3.4). O

The fifth claim addresses ihe number of Z jobs preceding each S job in some

good schedule that satisfies the preceding four conditions.

Claim Z1 If there ezists a good schedule that satisfies conditions (3.1)-(3.4), then
there ezists a good schedule that satisfies these conditions that also satisfies

job Js, is preceded by exactly iz Z jobs for each : = 0,1,...,¢. (3.5)

Proof: Among all good schedules that satisfy (3.1)-(3.4), let schedule o be one

with minimum total completion time. Suppose that schedule o does not satisfy

64

condition (3.5), so that in o, some job Js, is preceded by either fewer than or more
than 1z Z jobs.

First, suppose that in schedule o, some job Jg, is preceded by fewer than iz Z
jobs. Then, the sum of processing requirements of jobs preceding job Js, in schedule

o 1s no more than

i+ (z—ljv+th=ti+1zv—v+1tb
=i(l+zv+b)—v+th—1ib
=ic—v+th—1b
< tc,

where the last inequality follows since v > 3tb > tb. By the definition of ug, and
since o satisfies (3.1), then o(S;) 2 ic, so ¢ must include machine idle time prior to
time o(S;), a contradiction of the fact that ¢ is a minimum total completion time
schedule.

On the other hand, suppose that in schedule o, some job Jg, is preceded by more
than iz Z jobs. Then, the sum of processing requirements of jobs preceding job Js,
in schedule o is at least

i+ (tz+ 1)v =ic+ v — b,

so 0(S;) 2 ic+ v — 1b. Thus,

¢ ¢
3> Cs,(0) 2 Y (je+ 1) +v—ib=S5+v—ib

y=0 j=0

Moreover, the total completion time of the X and Z jobs in schedule o is at least

S (te+1+jz) =X

1=1

and t
Zjv=2—3tb—tz—u~z(b+l),

J=1 2

65

respectively. Hence,

ZC,(U)2S‘+X+Z+v-—z‘b-3tb-t:~t(L;-l—).:(bH).

Sincev = z+(3tb+tz+ﬂ%"—‘)-z(b+l)) and z > 1b, then 3 C;(0) > Y, a contradiction

of the fact that ¢ is a good schedule. Therefore, o satisfies condition (3.5). O

The sixth and final claim in the proof of Proposition 3.12 specifies start times

for the S jobs in some good schedule that satisfies (3.1)-(3.5).

Claim Z2 If there ezists a good schedule that satisfies conditions (3.1)-(3.5), then

there exists a good schedule that satisfies these conditions that also satisfies
o(S;) = jeforeach j =0,1,...,t. (3.6)

Proof: Among all good schedules that satisfy (3.1)-(3.5), let schedule o be one
with minimum total completion time. Suppose that schedule ¢ does not satisfy
(3.6), so that o(S;) > ic for some i (since o(*) > p(J) = tc+ zv + 1, then o(S,) >
p(J) — us, — ps, = ic). Since schedule o satisfies (3.4), then o(X,) = tc + 1 and
hence 0 < ¢ <t — 1. Since o satisfies (3.5), then the number of Z jobs scheduled
between jobs Js, and Js,,, in schedule o is z. The total completion time of these =
jobs in schedule o is at least 3°7_,(tc + 2 + jv). The total completion time of the
Z jobs between jobs Js,, and Js,,,, in schedule o is at least }°7_,(mc+ 1 + jv) for
any me = 0,1,...,¢t — 1. Thus, the total completion time of the Z jobs in schedule o

is at least
t-1

Yo (me+l+ju)+z=2Z-3th+z=2+1

m=0

The totai completion time of the S and X jobs in schedule o is at least § + X. Now.
S Clo) 25+ X+ Z+tctzv+2=Y 41,

a contradiction of the fact that o is a good schedule. Therefore, schedule o satisfies

(3.6). ©

66

Table 3.2: Complexity classification of 1 / min and max delays, k 1-chains / ¥ C,
or 3 w;C; problems.

Type of Delays | Objective Function | Complezity
min delays > C; O(k’1gk)
min delays Y. w;C; NP-hard
max delays > C; NP-hard in the strong sense

To complete the proof, suppose that there exists a good schedule. Then, by
Claims S, X1, X2, X3, Z1, and Z3, there exists a good schedule ¢ that satisfles
conditions (3.1)-(3.6). Let Z; consist of those Z jobs scheduled between jobs Js,_,

and Jg, in schedule o for : = 1,...,t. The preceding six claims imply
|Zil=zand jez,pj=c—1=2v+b

foreach:i =1,...,t.
Since every V job in Z; has processing requirement v, and every W job in Z; has
processing requirement between v + % and v+ %, then Z; must contain exactly three

W jobs with processing requirements that sum to 3v 4 b. Thus, if we let
T, = {] : 0'(5.'-1) < G(Wj) < O‘(S.'), 1=1,... ,3t}

fort=1,...,t,then Tjer,aj=bforeach:i=1,...,t. O

In this chapter, we have investigated the computational complexity of total com-
pletion time and total weighted completion time problems with precedence relation

k 1-chains. The complexity results we have obtained are summarized in Table 3.2.

67

CHAPTER 4

1 / min and max delays,
2 ny,n9-chains / Cmaz

Chapter 2 addressed the computational complexity of minimum makespan prob-
lems for which the number of chains was a parameter, k. In this chapter, we fix
k = 2 and investigate the complexity of two resultant problems. These two prob-
lems, 1 / min delays, 2 ny,ny-chains / Cp,z and 1 / max delays, 2 ny, ny-chains /

Cinaz, are the topics of Sections 4.1 and 4.2, respectively.

4.1 1 / min delays, 2 ny,ns-chains / C,,,;

Recall from Chapter 2 that associated with each feasible sequence (i.e., with
each sequence that satisfies the ordinary precedence constraints underlying 2 n;,n;-
chains) is an active schedule that schedules each job, and job * in particular, as early
as possible so as to respect the sequence and to satisfy the machine capacity and
the minimum delay precedence constraints. Thus, 1 / min delays, 2 ny, n;-chains /
Crmaz 1s the problem of finding, among all feasible sequences, a sequence that has
associated active schedule with minimum makespan. In this section, we provide
a characterization of the feasible sequences. Starting from this characterization,
we develop a pseudo-polynomial time dynamic programming algorithm for 1 / min
delays, 2 n;, np-chaing / Cpq,-

The 2 n,, n,-chains precedence relation imposes strict ordering requirements on

jobs Ji1,...,Jin, and Jy, ..., J2.4,. Consequently, we can equate with each feasible

68

sequence a string of ny-1’s and n;~2’s. The rth symbol in the string is a 1 (2) if the
first subscript of the rth job in the given sequenceis a1 (2) for r = 1,... ,n, + n,.

The number of ways to choose n; of n; +n; symbols to be 1's, and hence the number

ny + ng
ny

(see [8]), which is not bounded by any polynomial in n; and n,. Thus, 1 / min

of feasible sequences, is equal to

delays, 2 ny,nz-chains / Cp,, cannot be solved in polynomial time by explicitly
enumerating all feasible sequences.

In the following discussion, we refer to job * as Jy 4, and we let Jy 4 (J;0)
be a job with zero processing requirement which must precede job Jy; (J5;) (see
Figure 4.1). We define l; o = 0 and /o = 0. We refer to jobs J1g,J11,-. ., Jin 41 a8
the 1-jobs and to jobs Ja4,J21,...,J2,n, as the 2-jobs.

Without loss of generality, J,¢ is the first job and J; o is the second job in any
feasible sequence. Since Jyn,41 is necessarily the last job, then, in any feasible
sequence, the 2-jobs other than J;¢ are interspersed among the 1-jobs. Due to the
strict ordering requirements on the 2-jobs, each feasible sequence is characterized by
the number of 2-jobs (other than J;5) between jobs J; ; and Jy i41 fori =0,1,. ... n,.

We might imagine there are n, + 1 bins, one each between jobs J;; and J; 41
fori=0,1,...,n,, into which the 2-jobs are placed (see Figure 4.2). Suppose that,
having placed z; of the 2-jobs in bin j for j = 1,...,¢— 1, so that s,_; = T'Z} z; of
the 2-jobs are in bins 1,...,¢ — 1, we decide to place z, of the ny — 3;_, remaining
2-jobs in bin ¢. This decision corresponds to appending jobs Jz24,_, 41, - -, J2.0,_ 4205

and Jy 4, in that order, to the end of the sequence
Jaw = Jio = Jog == Sy iy o Sz = - = Darpr, = 2

—t e Ju-z - J?,z1+~-~+z._;+l == Jz.:.-, - Jl.l—l-

Let f; be the contribution of these additional jobs to the makespan of the active

schedule associated with the appended sequence. In other words, f; is equal to

69

9 e no e

Figure 4.1: Strict ordering requirements imposed by 2 n;, n,-chains.

Jg,o Jl,O Bin 1 Jl,l Bin 2

Bin ny

Jl,nl

Bin n; + 1

Figure 4.2: Bins into which the 2-jobs are placed.

70

Jl,n1+1

the difference between the completion times of jobs Ji: and J;,_; in the schedule

associated with the appended sequence. Then, for each solution z,,...,z,,4; of
T4+ Tag1=ny, €L forj=1,...,n; + 1,

the makespan of the schedule associated with the feasible sequence defined by
T1y---,Eny4r is equal to TP f,. For reasons which will soon be apparent, we
define w,_; to be the difference between the start time of job J;_; and the comple-
tion time of job Jp,,_, in the schedule associated with the original sequence.

We now exhibit formulas for f; in terms of s,_y, wy_;, and z, for each t =
1,...,n1 + 1 and each feasible combination of z,,...,z,_1, and z,. These formulas
depend on zy,..., ;.1 only through the roles these variables play in determining
St-1 and wi;. Subsequently, we show that for ¢t = 1,...,n; + 1, both s; and w,
can be computed given only s,_,, w,_;, and z¢, so that we can treat 1 / min delays,

2 ny,ng-chains [Cpq- as a discrete-time sequential decision process modeled as

ni+1
2 = 31.!2:'?1.“ g f‘(st_lthol, .’t,)

(Sn w,) = ¢t(3t-x, W1, 1’:) fort=1,...,ny +1

(80, w0) given.

Then, we prove that the dynamic programming recursion that arises from this model
allows us to solve 1 / min delays, 2 n;, ny-chains / Cpez in pseudo-polynomial time.

In exhibiting formulas for f;, we consider four cases, the first and second with
t € {1,...,n,} and either z; = 0 or 2, € {1,...,n; — 8,1}, and the third and
fourth with ¢ = n; + 1 and either 8,_; = 3n, = nj or s, € {0,1,...,n; — 1}.
From Figure 4.3, we see that for each t = 1,...,n; ard each feasible combination

of Tiy,...,T8~1, and T with Ty = 0,

Jo=lie-1 4+ prs (4.1)

71

JaolJiof ¢« ¢ - Jit-1 Jig

e "

l1,0-1 Pi¢

coo | oy | 00 e it V/FARETE B IR S Y/ P Jig
........... o
Wey a PLP,, 41,0143, 92 Pis

Figure 4.4: Makespan contributiou fi, t € {1,...,m} . € {1,...,n2 — 8¢1}.

Define

m/—~1

PLPm,m' = Z (p?.r + 12,1') +p2,m'$ 1 S m S m’ S ny.

r=m
We see from Figure 4.4 that for each t = 1,...,7n; and each feasible combination of
t-1

Z1,...,%4-1, and z, with z, € {1,...,n2 — 841}, where s;., = 421 Ti
ft =0 + PLP:,..;+1,J,-1+1'¢ + g2 + Pty (42)
where
g2 = [Il-f—l - (gl + PLPlt-x+l,lt-1+$t)]+ (43)
and
91 = {laa_y = (Weer + 1)} (4.4)

Examining Figure 4.5, we see that for each feasible combination of z,,...,z,,,

and z,, 4, such that s, =71, z; = n,,

fnl+1 = max{ll'nl’ [lzrﬂz - (w"l + p]vnl)]+} + p“ (4'5)

Finally, we see from Figure 4.6 that for each feasible combination of z,, ..., z,,, and

Zn,+1 such that s, =371, z; € {0,1,...,ny — 1},

fﬂ1+l =g + PLP.,,, +1n; + 92 + Puy (46)

72

JZ.OJI.O ¢ v Jz.ng e Jl.n, *

Wny m“{ll,nl v[l2.n2 ~(wny +p 1)]*’} Pe

Figure 4.5: Makespan contribution f;, +1, $s, = n2.

v e Jz""l LY le"l JQ,.,‘1+1 te e E J2,n2 *

Wny n PLPuy, 41,ny 92 Pe

Figure 4.6: Makespan contribution f,, 41, 35, € {0,1,...,n; —1}.

where
g2 = ma‘x{[ll.m - (gl + PLPM, +1,ng)]+s 12.112} (4'7)
and

N= {12,8-, — (wn, +Pl.n1)}+- (4.8)

Equations (4.1)-(4.8) give formulas for f; in terms of s;_;, w;_;, and z, for each
t=1,...,n;+1 and each feasible combination of z,,...,z,_;, and z,. These formu-
las depend on i, ...,z ; only through the roles these variables play in determining
S¢~1 and wy_,. We now show that, given s;_;, w1, and z;, we can compute both
s; and w; for £ = 1,...,ny + 1, so that the model on page 71 is of the correct form.

By definition,
;=8 1+zfort=1,...,n1+1,8.1=0,1,...,n3,and z, = 0,1,...,n3 — 84y,

where so = 0. Thus, given s,.; and z,, we can compute s; fort =1,...,n; + 1.
For each ¢t = 1,...,n; + 1 and each feasible combination of z,,...,z,_1, and

T, w; is defined to be the difference between the start time of job J;; and the

completion time of job J;,, in the schedule associated with the sequence defined

by zi,...,2¢-1, and z,. From Figure 4.3 and equation (4.1), we see that for each

73

t =1,...,n;, and each feasible combination of z,,...,z,.1, and z, with z; = 0,
Wy = Weoy + Pre-1 + le-. (4.9)

We see from Figure 4.4 and equations (4.2)-(4.4) that for each t = 1,...,n; and

each feasible combination of zi,...,2_1, and z, with z, € {1,...,n3 — 3,1},
we = g2 = [lh4-1— (g1 + PLPsy_ 41,4 +2)] 7, (4.10)
where
g1 = {laay — (Weer + prea) } (4.11)

Equations (4.9)-(4.11) make sense only if w; = 0. Since there are only n; + 1
decisions to be made, then w,, 4, is irrelevant. We adopt the convention w,, 4; =0
for each feasible combination of zy,...,Z4,41. Therefore, given s;_;, wi_;, and z;,
we can compute both s; and w, for t =1,...,n; + 1.

A potential difficulty with the model on page 71 is in the large number of distinct
w;-1’s that might be paired with a given s;_;. The number of feasible sequences of
jobs Ji1,...,J14-1 and Jay,...,Ja,,., With job Jy ., last is equal to the number of

ways to choose t — 2 of t — 2 + 8,.; symbols to be 1’s. In other words, as many as

t*—2+8:..1
t—2

distinct we.’s might be paired with s,_; foreacht = 2,...,n; and s;_; = 0,1,...,n,.

Since
ni

n2
C*=3 (pri+hs)+ I (p2j+ ;) +p.

i=1 =1

is an upper bound for the makespan of any schedule, then w,_; < C*. Thus, the
number of distinct w,_,’s paired with s,_, is at most C* for each t = 2,...,n, and
8.1 = 0,1,...,nz. (As always, we assume that the data are integral.) We now
prove that we can replace w;_; by min{w¢_1,{l2,,_, — p1,t-1]*}, so that the number
of distinct wy_;’s paired with s,_, is at most 1+4{l3,,_, —p1.1-1]* foreacht =2,...,n,

and 8,_; =0,1,...,n3.

74

Examining equations (4.2)-(4.8), we see that w,_y > l3,,_, — p1.t-1 is a condition
under which each f; is in fact independent of w,_;. We see from equations (4.10)
and (4.11) that w;_y > l;,,_, — p1,¢-1 18 also a condition under which, for each t =
1,...,n, and each feasible combination of z,,..., 21, and z; withz, € {1,...,n3—
Si-1}, wy is in fact independent of wy._;. From equation (4.9), we see that for each

t =1,...,n; and each feasible combination of z,,...,z,_,, and z; with z, = 0,

Wiy 2 12.«_, — P11 = Wy 2 12.-,._, + ll,t-—l = 12,.. + ll.t-l 2 l2.s¢ — D1ty

that is, wy_y = l25,_, — P1,1-1 i8 a condition under which », > I, ,, — p; ;. Therefore,
we are justified in replacing wy—; by min{w;_1, [l2,5,_, ~ P11}t } foreach t = 2,... n,
and sy =0,1,...,n;.

We now state the dynamic programming recursion that arises from the model
given on page 71. Let zo(so, wo) = 20(0,0) = 0. Foreachm = 1,...,n; +1 and each

pair (8m,wn), let

m
Zm(SmyWm) = min Y fi(seo1, weo1,)
t=1

(Stywy) = Ge(S4-1, Wiy, &) fort =1,...,m
(80, wo) = (0,0).
Then, z = zp,41,(n3,0). By the principle of dynamic programming optimality (see
[4] for example),
Zn(Sm, W) = n},in(fm(sm-l,wm_l,zm) + Zm-1(Sm=1, Wm-1)) (4.12)
Q= {8m-1,Wm-1, and Tpn : H(Sm-1,Wm-1,ZTm) = (Spn,wm)}

for each m = 1,...,n, + 1 and each pair (8, wn,).
The following proposition gives the computational complexity of solving 1 / min

delays, 2 n;,nz-chains / Cpar using (4.12).

Proposition 4.1 The I / min delays, 2 ny,ny-chains / Cpap problem can be solved
using the dynamic programming recursion ({.12) in time O(nn3(1 + [L; — pi]*)),

where L2 = MaX;=1,...,n;3 I?,j and n= mini:?,...,n; Dis-

75

Proof: The bottleneck operations in computing z,(Sm,wm) are calculating and
determining the minimum of at most s,, + 1 quantities. The number of distinct w,,’s
paired with a given s,, is at most 1 + [L; — py]*. Thus, foreachm =1,...,n, + 1,

computing zm(8m,wn) for each s,, and w,, requires time

O((1 + Ly = pr*) 3 (sm + 1)) = O(n2(1 + [Ls = pi]*)). O

‘m'-'o

We have tried without success to classify 1 / min delays, 2 n;, n,-chains / Cp,:
more precisely with respect to its computational complexity. Whether or not this
problem is solvable in polynomial time and whether or not this problem is NP-hard

are open questions.

4.2 1 / max delays, 2 n;,ny-chains / C,.

In Section 4.1, we presented a characterization of the feasible sequences, that is,
of the sequences that satisfy the ordinary precedence constraints underlying 2 n, n,-
chains. In this section, we show that this characterization leads to a polynomial time
dynamic programming algorithm for 1 / max delays, 2 ny, n;-chains / Cpqe.

Without loss of generality, solutions to 1 / max delays, 2 ny,nz-chains / Cp,:
include no machine idle time, since removing machine idle time from a schedule that
satisfies the maximum delay precedence constraints results in a feasible schedule with
smailer makespan. Schedules without machine idle time are necessarily minimum
makespan schedules. Thus, 1 / max delays, 2 n;,n,-chains / C,,, is the problem
of finding a schedule without machine idle time that satisfies the maximum delay
precedence constraints.

As in Section 4.1, we refer to job * as Jj »,+1 and we let J; o (J20) be a job with
zero processing requirement which must precede job J;,; (J3:1). We refer to jobs

J1,0yJ1,05 -+ y J1n, 41 a8 the 1-jobs and to jobs Ja0,J21,-.-,J2.n, as the 2-jobs. We

76

define [, o = oo and I35 = 0o so that, without loss of generality, Jy o is the first job
and J p is the second job in any feasible sequence. Then, each feasible sequence is
characterized by the number of 2-jobs (other than J;o) between jobs J1; and Jy i1
fori=0,1,...,n;.

We say that a schedule of the jobs in J is feasible if that schedule satisfies the
maximum delay precedence constraint corresponding to each < J,,J» > € P. In
the same vein, we say that a schedule of the jobs in J' C J is feasible if that
schedule satisfies the maximum delay precedence constraint corresponding to each
<J.,Jo>€ P such that J, € J' and J.» € J'.

Again as in Section 4.1, we might imagine there are n; + 1 bins, one each be-
tween jobs Jy; and Jy 441 for i = 0,1,...,n,, into which the 2-jobs are placed (see
Figure 4.2). Suppose that, having placed z; of the 2-jobs in bin j for j = 1,...,t -1,
so that s,y = TiZ] z; of the 2-jobs are in bins 1,...,t — 1, we decide to place z; of
the ny — s;_1 remaining 2-jobs in bin ¢. Let w,_; be the difference between the start
time of job Jj—; and the completion time of job J;,,_, in the schedule (without
machine idle time) defined by z1,...,7:-1. Then, from Figure 4.7, we see that for

t=1,...,ns, the schedule defined by zi,...,2:-;, and z; is feasible if aud oniy if
1. the schedule defined by z,,...,z:1 is feasible and

2. if z; > 0, then w;_1 + p1,4-1 < uz,,_, and

8101 +T¢

P2r < Uy
r=s.-1+1

Moreover, we see from Figure 4.8 that the schedule defined by z,...,Zs,, and z,, 44

is feasible if and only if

1. the schedule defined by z,,...,zn, is feasible and

77

M JZ,&,-; et Jl,t—l J2.sg_1+l A J2,8:-1+z[Jl,t

Figure 4.7: Schedule defined by z,,...,z,_;, and z,.

e o o Jz""‘ ¢ o o Jl.ﬂl Jz"nx+1 e o o J2vn7 *

Figure 4.8: Schedule defined by z1,...,Zs,, and Za,41.

2. if zp, 41 = 0, then wa, + p1,n, < Uy,4,; otherwise,

ny
Z p2," S ul,ﬂx'

T=8ny +1

Thus, given that the schedule defined by z,,...,z..; is feasible, we can easily de-
termine whether or not the schedule defined by z,,....z;_;, and z; is feasible for
t= 1, <oy Ny,

Let z1,...,z; and z{,...,z{ be distinct solutions of
T1+- -tz =9 z; €L forj=1,...,¢

for some t € {2,...,m} and s € {l,...,n2}. Assume that both &' and ¢”,
the schedules defined by zi,...,z{ and z{,...,z{, respectively, are feasible. We
say that z{,...,z; dominates zf,...,z{ if the existence of z{,,...,z; ,, with
Yo 2 = ny— s, such that the schedule defined by z7, ..., 27 ., is feasible implies

the existence of z{,;,..., %}, 4; With =311}, 2/ = ny — 3, such that the schedule de-

78

f 7 T 3] e [/
fined by z},..., 2y ,, is feasible. We now present a sufficient condition for zi,..., z}

to dominate z7,...,z}.
Proposition 4.2 If0'(2,3:) 2 0"(2, 8:), then zi,...,z; dominates z¥,...,z}.

Proof: Suppose that the schedule, 6", defined by z{,...,z; ., is feasible. We
verify that the schedule, &’, defined by z3, ..., z;, &}y, .-, Tn 4 is feasible. Since o’
is feasible, then 6 satisfies the maximum delay precedence constraints corresponding
to < Jr,Jr > € P such that J, € J** = {J10,J11,..+sJ1.e} U {J20, 2,15+ -y J2,0. }
and J,.» € J4*. Since 4" is feasible, then &’ satisfies the maximum delay precedence
constraints corresponding to < J;, J,»>€ P such that J, € J\J** and J,, € J\J"*,
Now, < J,, Jy» > € P such that J, € J»** and J,» € J\ J4* consists of <Jy, J1 141>
and, if 8¢ < ng, of < Ja4,,J2,0,41 >- Schedule &' satisfies the maximum delay

precedence constraint corresponding to <Jy, Ji 41> since
&'(1,t) = 8"(1,t),

Cr441{0") = C141(6"),

and
Cran(6") — 6"(1,1) S uys.
Since
&’(2, Sg) = (7’(2, Sg) < 0'”(2, S‘) = &”(2, St),
C2.n+_l (&') = Ca441(0"),
and

C2,0041(6") — 8"(2,3¢) < Uz,

then schedule &' satisfies the maximum delay precedence constraint corresponding

to < JZ,JH J2m+1 >.a

Using Proposition 4.2, we can solve 1 / max delays, 2 n,,n;-chains / Cmqer by

dynamic programming as follows. For t = 1,.,.,n; and s, = 0,1....,ny, we check

79

the feasibility of the schedule obtained by adding jobs Ja,,_,41,...,J2,,, and Jy .,
in that order, to the end of a feasible schedule (if any) of jobs Jy 0, J14,..., 101
and Ja20,J2.1,. .., 2.5, With job Jy..; scheduled last for s,_;, = 0,1,...,s, and
we select from among the feasible schedules (if any) one with job J,,, scheduled
latest. Then, for t = n; + 1, we check the feasibility of the schedule obtained by
adding jobs Jz,, 41,-..,J2,n,, and #, in that order, to the end of a feasible schedule
(if any) of jobs Jyg,J1,1,-.+,J1,n, and Jpp, a1y 3 J24,, with job Jy ., last for
8n, =0,1,...,n3. The time required to solve 1 / max delays, 2 n;,nj-chains / Ce-
using this recursive procedure is

n
O(n1)_ (8¢ + 1) + na + 1) = O(nyn3).

n =0

In this chapter, we have investigated the computational complexity of minimum
makespan problems for which the number of chains is two. In particular, we showed
that 1 / min delays, 2 ny,ns-chains / Cp,,; can be solved in pseudo-polynomial time

and that 1 / max delays, 2 n,,ns-chains / Cmo; can be solved in time O(nynl).

80

CHAPTER 5

SPECIAL CASES,
HEURISTICS, AND BOUNDS

In this chapter, we present a miscellany of results including polynomially solvable
special cases, heuristics, and bounds for two problems which are not known to be
solvable in polynomial time. The first problem, 1 / min delays, k 2,1,..., 1-chains
/ Cmaz, was shown to be NP-hard in Chapter 2. The second problem, 1 / min
delays, 2 ny, ny-chains / Cpqz, Was shown to be solvalle in pseudo-polynomial time

in Chapter 4.

5.1 1 / min delays, k 2,1,... ,1-chains / C,,,,
5.1.1 Relative Ordering of Jobs J,,...,J;

In each feasible sequence for k 2,1,...,1-chains, each job from {J,...,Jx} ap-
pears either before job J;,, between jobs J;, and J;,, or between jobs J., and +. The
following proposition describes the relative ordering of the jobs from {J,,...,Ji}
which appear before job J;,, between jobs J;, and J;,, and between jobs J,, and =

in the sequence associated with some optimal schedule.

Proposition 5.1 There erists an optimal schedule o* with associated sequence of

the form

Je:"’“'—’Jei"‘Jn '—’Je.-+1 ""’"“"Jem""lzz—”lcmn —y..._.y,]eh-—»#,

81

where 1 <1 < m < k, such that

leg > 2y Aoy 221

yand l,,, > > 1L, (5.1)

em em+1
Proof: Let o be any optimal schedule and suppose that the sequence associated
with schedule o does not satisfy condition (5.1). Then, there exist adjacent jobs
Jj and Jj:, both in {J3,...,Ji}, such that J; — J; but I; < L., Let o’ be the
schedule obtained from schedule o by interchanging jobs J; and J;;. Let & =
maxy,e\(J, J;sHCH(0') + ir} = maxy ey, s,,..1{C+(o) + I:}. Then
Craz(0’) = max{A, C;(o') + 1;, Ciyi(0’) + 11}

=max{4, o(j) +p; +pi + 1, 0(j) + pp + 13}

< max{4, o(j) +pj +py +1j, o(§) + pp + s, 0(5) + p; + py + s}
o(j) +pj + pir + i}
= max{A, a(j) +p; +1;, o(j) + pi + 2y +1;)
= max{A, C;(¢) 4 ;, Cj(o) + 1;:}

= moz(a)-

I
3

k3
|

Repeating this argument, we see that schedule o can be transtormed into a schedule

that satisfies (5.1) without affecting the makespan. O

The number of sequences of the form

Jog = -0 = J, ""J:;“"Je.-.n"""""-]e...‘—’ng—’Jem“ — e J,, o

that satisfy (5.1), where 1 < i < m < k, is equal to the number of ways to distribute
k — 1 labeled objects (i.e., jobs Js,...,Ji) into three labeled bins, one before job
J:,, one between jobs J;, and J;,, and one between jobs J;, and *, where bins are
allowed to be empty. By a straightforward combinatorial argument, we can show

that the number of such distributions is 3*-!.

5.1.2 Heuristic with Worst Case Performance Ratio 2

The worst case performance ratio of a heuristic algorithm for a given minimiza-

tion (maximization) problem is defined to be the supremum (infimum) taken over

82

all problem instances of the ratio of the value of the heuristic solution to the op-
timal value. As a prelude to presenting a heuristic algorithm for 1 / min delays,
k2,1,...,1-chains / Cper with a worst case performance ratio of 2, we describe two
relaxations which yield lower bounds for the optimal makespan. The first relaxation
of the instance of 1 / min delay, k 2,1,...,1-chains / Cp,- shown in Figure 5.1 is
obtained simply by eliminating job J;, (see Figure 5.2). The second relaxation is
obtained by eliminating job J,, and imposing a minimum delay of I, + p-; + I, be-
tween jobs J,, and * (see Figure 5.3). Clearly,if 0! : J\ {J;,} — Z¢ is an optimal
schedule for the instance of 1 / min delays, & 1-chains / Cp4, shown in Figure 5.2
and o* is an optimal schedule for the instance of 1 / min delays, k 2,1,...,1-chains

/ Cmaz shown in Figure 5.1, then
C.(a‘) < C.(o%).

Similarly, if 02 : J\ {Je,} — ZJ is an optimal schedule for the instance of 1 / min
delays, k 1-chains / Cpmer shown in Figure 5.3, then

C.(c*) < C.(0").

From o!, we can obtain a schedule for 1 / min delays, k 2,1,...,1-chains / Cpa:
with a makespan that exceeds the makespan of schedule ¢! by at most p., + I;,.
In Section 2.1.1, we proved that 1 / min delays, k 1-chains / Cy,,; is solved by
sequencing jobs Jj,...,Ji in order of nonincreasing precedence delay. Thus, we

may assume that the sequence associated with schedule ¢! has the form
Jeg =00 — Jo; = Jzy = Je‘.“ == J,, %

=~ ‘&1

where 1 <i<kandl,>--- 21, >1;, 21, 2. 21.,. Let &' be the schedule
obtained from &! by scheduling job J., first, that is, &' is the schedule associated

with the sequence

N~
J,,,x----)Je,—-»-----»,le'.-—-»J,,,,—-p.]e..‘H — = S, ok

83

Figure 5.1: Instance of 1 / min delays, k 2,1,..., l-chains / Cp.,,.

Figure 5.2: First relaxation of 1 / min delays, k 2.1,...,1-chains / C.... instance.

84

Figure 5.3: Second relaxation of 1 / min delays, & 2,1,..., 1-chains / Cy,a. instance.

RONRO0IORN0YO
Pz, + 1z

Figure 5.4: Weighted, directed graph corresponding to schedule é!.

From Figure 5.4, we see that

&1(3’2) = ‘71(32) + Pz, + [Itl - Z:=2 Pes]+
< 01(32) + Pz, + ISU

which implies
Cu(6") = Cul0') < poy + 1y

Similarly, from o2, we can obtain a schedule for 1 / min delays, k£ 2,1,...,1-
chains / Cpmer with a makespan that exceeds the makespan of schedule o? by at
most p,, + I;,. We may assume that the sequence associated with schedule o2 has

the form

Jog = oo = dpp, = Jyy = J — e —

em41 — *0

ek

Whetel Sms kand Icz 2 s _>_lem 2 lxi +p:2+lz2 Z ICm+[Z b Z IC.‘ Let

85

l,,

< Zt-—m-n Pe,

Figure 5.5: Weighted, directed graph corresponding to schedule 2.

62 be the schedule obtained from o? by inserting job J,, as soon after job J,, as
possible so as to satisfy the minimum delay precedence constraint corresponding to

< Jzy,Jz, >, that is, 62 is the schedule associated with the sequence

= Je, o Jp, = J

€ryt

Jo = o Jey =y = J

€m+1 = Je ¥,

where r = argmin{s =m +1,...,k: Tj_ms1Pe 2 Iz, }. If no such r exists, then
job J, can be inserted into schedule o? before job * without affecting the makespan,
in which case C,(6?) = C.(¢?). On the other hand, if r exists, then, from Figure 5.5,

we see that .
&2(*) = 0'2(*) + Pz, + [z, — Z Pec]+-
t=r+41

Thus,
C-(&z) - C-(az) < Pr, + Irz‘

We now prove that the heuristic that involves selecting between 6! and 42 the

schedule with smaller makespan has a worst case performance ratio of 2.
Proposition 5.2 Let 0 = argming_s 52{C.(6)}. Then C.(a) < 2C.(c").

Proof: We consider two cases, the first with p;, + I;, < p,, + [;, and the other
with pz, + Uy > poy + Iz,- U pey + 12, < Pz, + 12y, then

Co) _ CudY)
Cuo*) = Cuo”)

86

C. (5"

N’

<
~— C.(oY)

< C‘(al) + pl'x + lxl
- C.(cot)

< C’(al) + pt: + 11'7
= C.(o?)

< 2C. (o)

= C.(oY)

= 2,

where the last inequality follows since C.(o!) > p., + I:,. On the other hand, if
Pz, + In > Py + 1;-2, then

Co) _ C.(69)
Cilo) = Tulon)
C.(5%)
D)

C'(az) + pz, + 1,
C.(0?)

IN

Cu(0?) + py + 1,
C.(0?)

IA

2C. (o)

S T
= 2

where the last inequality follows since C.(0?) > p,, +1,,. O

This heuristic can be accomplished in time O(k Ig k), the time required to sequence

k jobs in order of nonincreasing precedence delay.

87

The proof of Proposition 5.2 is based on the inequalities
C‘(&l) - C‘(al) .<.. Pz, + I:,

and

C-(&z) - C‘(ag) < po, + Itz'

Proposition 5.2 gives the strongest possible result only in the seemingly unlikely
event that for some instance, both of these inequalities are tight. Conceivably, a
worst case performance ratio less than 2 could be established. As the following
series of examples shows, though, the heuristic’s worst case performance ratio is
at least 2. Let k =4, p;, = pr, =pe =1L, pa=ps =38, pa =3, l;; = s+1,
lz; = 8,13 =13=1, and Iy = 0. Then &*, the schedule corresponding to sequence
Jzy = Jz; = J3 = J3 = Jy — %, has makespan 33 + 4 and 42, the schedule
corresponding to sequence J,, — J; = J3 — Jy — J;; — * has makespan 3s + 3.
The optimal schedule, corresponding to sequence J;, — J; = J3 — J,, — Jy — =,

has makespan 2s + 4. Thus,
Cuo) .. 3343

N Rl Ty

Schedules & and &2 belong to the class of schedules associate? with sequences
obtained by first ordering jobs J,,...,J; by nonincreasing precedence delay and
then inserting jobs J;, and J,,, with job J;, before job Jz;. The number of such
insertions is O(k?). Since computing the makespan of the schedule associated with a
given sequence requires time O(k), then finding a schedule with minimum makespan

among these insertion schedules can be accomplished in time O(k Ig k + k3).

5.1.3 Pseudo-polynomial Algorithm for Special Case with
lh=---=l;=0

In proving that 1 / min delays, k£ 2,1,...,1-chains / Cp4r is NP-hard, we in
fact proved that the special case with {; = --- = [, = 0 is NP-hard. We now prove

88

Jc: v Je le Je."n s Je --------------- J;r; Jem+1 v Jck ________ B

m

. J (=S

Figure 5.6: Obtaining schedule * from schedule o*.

that this special case is not NP-hard in the strong sense by exhibiting a pseudo-
polynomial time algorithm.

The following lemma specifies the first job scheduled in some optimal schedule.

Lemma 5.3 There ezists an optimal schedule for the special case of | / min delays,
k2,1,...,1-chains / Cppor withly = --- = I, = 0 in which the first job scheduled is
Jz, -

Proof: Let 0" be any optimal schedule. If the first job scheduled in o* is J;,,
the proof is complete, so suppose that jobs J,,,...,J., are scheduled before job J,
and jobs J,
1 €1 < m < k. From Figure 5.6, we see that the schedule, 3, obtained from ¢* by

i+11+ -1 Jem are scheduled between jobs J;, and J;, in schedule o*, where

interchanging jobs J., and J;, has makespan A less than C,(o*), where

A = (Z.:Pcc + Pz, + i Pe, + [z, - i Pe:]+) — (P + il’ea + [z, - ipu]*)

t=2 t=itl t=141 =2
= [lz, - E Pc¢]+ - [lﬂ-'x - Zp€¢]+

t=141 t=2

> 0.0

As a result of Lemma 5.3, we can restrict our search for an optimal schedule to those
schedules with job J;, scheduled first.

Let o be any active schedule with job J,, scheduled first, let S C {Ja,...,Ji}
include those jobs scheduled between jobs J,, and J, in o, and let T = {J,, ..., Ji}\

89

S include those jobs scheduled between jobs J,, and * in . Since [= --- =l = 0,
then the order in which the jobs in S are scheduled in o is immaterial, as is the order
in which the jobs in T' are scheduled in g. Now, either ¥, ¢s p; < Is,, in which case
schedule o includes idle time between jobs J;, and J;,, or £ esp; 2 ;. whence o
includes no idle time between jobs J;, and J,. Similarly, either 3°; ¢7p; < I,, in
which case schedule o includes idle time between jobs J:, and , or 3_; e p; 2 I,
whence ¢ includes no idle time between jobs J;, and *. In other words, schedule ¢
has one of the four forms shown in Figure 5.7.

Since

Pz; + lzl + ng + 11'3 + P.

is a lower bound for the optimal makespan, then a “Form 1" schedule is necessarily

optimal. Moreover, since

Y pi

JjedJ

is a lower bound for the optimal makespan, then a “Form 3” schedule is necessarily
optimal as well.

For each j = 2,...,k, define

7. = 1, job J; is scheduled between jobs J,, and J,
771 0, job J; is scheduled between jobs J,, and *.

Recall that all data are assumed to be integral and let z!? be an optimal solution
for the problem given by

k k
max{}_p;z;: Y _piz; <l —1, z € B* '}, (5.2)

=2 1=2

Problem (5.2) is a special case of the 0-1 knapsack problem known as ‘subset sum”

since, for each variable, the objective and constraint coefficients are the same. If

90

sy Isq

Form 1 | Js Jr,
......
Iay >0 sts,
Form 2 | Jz, Jz, *
.........
2l >¢ 2!x3
Form 3 | J:, Jz, *
2"‘1 132
Form 4 J:n Jz: *

Figure 5.7: Four possible forms for any schedule with job J;, scheduled first.

Sk 2p;(1 — z}?) < I,, then the schedule, 0%, defined by z? is a Form 1 schedule.
Otherwise, ¢'? is a Form 2 schedule with minimum idle time between jobs J;, and
Jz, and hence with minimum makespan among Form 2 schedules.

Let >4 be an optimal solution to

k k
min{)_pjz;:) p;z; 2 Iz, z € B¥ '}

3=2 j=2

Equivalently, 3 is the 0-1 complement of an optimal solution for the subset sum

problem given by

k k x
max{)_p;z;:) pijz; <Y pi—ls, T € B*'}. (5.3)

=2 =2 j=2

If 5%, pj(1 —z¥) > I;,, then the schedule, o™, defined by z3¢ is a Form 3 schedule.

34

Otherwise, 0™ is a Form 4 schedule witk minimum idle time between jobs J, and

91

* and hence with minimum makespan among Form 4 schedules.

In order to solve the special case of 1 / min delays, k 2,1,...,1-chains / Cpas
with {; = .- = I, = 0, we first solve the subset sum problems (5.2) and (5.3). 1f o2
(¢*4) is a Form 1 (3) schedule, then ¢!? (¢34) is optimal. Otherwise, the schedule
with minimum makespan between o!? and 0 is optimal. Problems (5.2) and (5.3)
can be solved y dynamic programming in time O(k - {2) and O(lc(z:j‘=2 pi —1z,)%),
respectively (see Nemhauser and Wolsey [19] for example). Thus, the NP-hard

special case with I3 = --- = [y = 0 can be solved in pseudo-polynomial time.

5.1.4 Heuristic with Worst Case Performance Ratio 2 + A
for NP-hard Special Case

As an alternative, we could solve /5.2) and (5.3) using the fully polynomial
approximation scheme described in Lawler {17] for the subset sum problem. An
algorithm for a minimization (maximization) problem is said to be a fully polynomial

approrimation scheme for that problem if, for any € € (0,1) the algorithm satisfies

1. for any problem instance, the worst case performance ratio (see page 82) is at

most 1 + € (at least 1 —¢) and
2. the running time of the algorithm is polynomial in the input length and in 1.

We now show how to use Lawler’s fully polynomial approximation scheme for the
subset sum problem in conjunction with a particular 0-1 knapsack heuristic to pro-
duce a heuristic algorithm with a worst case performance ratio of £ + A for any
A € (0,%) for an even more specific but still NP-hard special case of 1 / min delays,
k2,1,...,1-chains / Cmas-

This special case, with I3 = .- =l =0, p;, = p;, = p. =0, Zf,_z p; divisible
by 2, and I;, = [, = %2;’22 p;, is illustrated in Figure 5.8. The significance of
l;; = l;, = 1%, p, is that in any scheduie, either the sum of the processing
requirements of the jobs from {Jj,..., Ji} scheduled between jobs J;, and J,, is {;,

or greater, or the sum of the processing requirements of the jobs from {J,..., Jik}

92

Figure 5.8: Special case of 1 / min delays, k£ 2,1,...,1-chains / Cp,;.

scheduled between jobs J;, and * is [, or greater. Due to symmetry, we can assume,
without loss of generality, that the latter holds, which implies that the sum of the
processing requirements of the jobs from {J3,...,Ji} scheduled between jobs J,,
and J,, is {,, or less. Hence, this special case reduces to solving the subset sum

oroblem given by

k k
ma.x{Zp,-z:j . Zp,-z,- S Ixn T e Bk‘l}, (5.4)

j=2 J=2

where, for j = 2,...,k,

~_J 1, job J; is scheduled between jobs J,, and J,,
Zi=1 o, job J; is scheduled between jobs J;, and *.

We could, of course, solve problem (5.4) by dynamic programming in time O(k -
2). Instead, we will solve (5.4) using Lawler’s fully polynomial approximation

scheme, with ¢ determined as a function of the greedy heuristic solution of (5.4).

93

To solve problem (5.4) using the greedy heuristic, we proceed as follows.
Initialization: Sort jobs J,,...,Ji such that p,, > --- > p.,; b — .,.

For j=2,...,kdo

If b2 p,, then zf =1 and b+ b~ p.; otherwise, zz =0.

As a preliminary step, we prove that the greedy heuristic fills the knapsack defined
by (5.4) more than half full.

Proposition 5.4 The greedy heuristic solution, z9, to problem (5.4) satisfies

2 pizs > sl = 7 2 ps.

j=2 1=2

s

Proof: We can, without loss of generality, assume that p., < I.,, since otherwise,

—-—

the solution z* defined by

T

. _{o, if j =2

¢ "] 1, otherwise

is optimal for (5.4) and the corresponding schedule is optimal for the special case
illustrated in Figure 5.8. If p., > %ijﬂ p;. then we are done, so suppose that
Pe; < } Tty pj. Let & be the smallest index such that

1 k
Pt 4P > 7D Py

=2
By definition of §,

1 k
Pt tPe, S 72 Ps

i=3

94

Slnce Dey = < Pe, S 21—2 Pj> then

Pey + 0+ + Pey_, +Pea-—4ZPJ+4ZPJ—"ZPJ

=2 =2

Thus, the solution z’ defined by

) _{ 1, ifj=2,...,6

z, = .
€ 0, otherwise

is feasible for (5.4). Consequently, zf must equal 1 for j=2,...,6 and

k k
ijl‘? 2 ijz;‘ = Pey t 0t Peg > 7 ZPJ
y=2

i=2 =

We now present and establish the worst case performance ratio of a heuristic
algorithm for the special case of 1 / min delays, k 2,1, ..., 1-chains / Cpq illustrated
in Figure 5.8.

Proposition 5.5 The following heuristic algorithm for the special case of 1 / min
delays k2,1,...,1-chains / Cpoz with lz = --- =l =0, p;; = pz, = p. =0, and
Iz,

= L T4, p; has a worst case performance ratio of 3+ A for any A € (0,).
Heuristic Algorithm
Step 1: Solve problem (5.4) using the greedy heuristic. Select A € (0,%) and let

21-2 Pj

1
e=1-(=--A
(4)23*22}

95

Step 2: Solve problem (5.4) using Lawler’s fully polynomial approximation scheme

with ¢ from Step 1.

Proof: By Proposition 5.4,

21-2 pj

-
1211

5—1-(-—A) >l-—-(t—i-*A)4=4A>0.

Thus, Step 2 can be accomplished. Let z¢ be the heuristic solution and let z* be
an optimal solution for (5.4). The makespans of the schedules corresponding to z*
and z* are 3 EJ-g p;i + E,_z pi{l —z%) and] 21_2 Pj +§:;‘=2 p;(1 — z7}), respectively.

Now

21_2 pi+ E;‘:z pi(l1 - z;) - Z,-z bj — E_’::z PiZ;
; f:z p; + Zf:z pi(l - x;) E,-—z p; — Zf:z p;T;

3 Z,_z Dj — Ef—z piT;

<
f:?pJ

= _"i - Zf:? P_j-‘t;

2 2;:2 Pi
¢ 3_(U-9Thaps
-2 ZJ—.ZPJ

3 (1“‘(1“‘("'A) px))Z;-zPJ
- 2 ?:2?1

A (_ _ A)ZJ-QPJ y

3=2 pJ

3 1

< —=(-=-A

96

3
= 1+4,
where the first inequality follows since z* is feasible for (5.4), the second inequality

follows since R
P 4
2 1=2PiT;

2 (1 - 6)3
Jk'=2pjzj

and the third inequality follows since

X .
d pizi 2) pizd. O
i=2 i=2

Solving problem (5.4) using the greedy heuristic requires time O(k Ig k). Solving
(5.4) using Lawler’s fully polynomial approximation scheme requires time O(k + %)
in general. Since ¢ > 4A, then & < rriyy. Thus, the heuristic requires time
O(klgk + 25) overall.

The proof of Proposition 5.5 goes through with A = 0. Unfortunately, though,
the heuristic with worst case performance ratio § has running time O(klgk + %),
where ¢ depends only on the problem data. As the following series of examples
shows, € can go to 0, at least for small values of k. Let k = 5, p, = 35 + 2, and

Ps = pa =ps = 3s. Then, T}, pj =128 + 2 and T}_, p;z? = ps = 3s + 2. Thus,

2P g 12512
s~ 33+ 2

lim

4,
=0 2;:2 szg

which implies
. . 1
fme=lm1-(34=0
By selecting A > 0, we bound ¢ away from 0 and thus establish control over the

heuristic’s running time.

97

Proposition 5.5 can be generalized to the special case with I; = --- = [= 0,
Pry = Po =D =0, I, = aZfzzp,-, and I, = (1 — a) E;‘ﬂp", where a € [-;—, 1] is
such that both /;, and I,, are integers. For this special case, we execute the heuristic

algorithm twice with the same choice of A, first solving (5.4) and then solving

k k
max{)_p;j(1 —2;): }_pj(l - 2;) < I,z € B} (5.5)

j=2 j=2

We can assume, without loss of generality, that the greedy heuristic solution of
problem (5.5) has value greater than zero (so that ¢ is defined) since, otherwise,
r; = 0 for j = 2,...,k is optimal for (5.5). We select between the schedules
corresponding to the heuristic solutions of (5.4) and (5.5) the schedule with smaller
makespan. The ratio of the makespan of this schedule to the optimal makespan is
at most 1 + § + A. This heuristic can also be accomplished in time O(klgk + z5)
provided that the greedy heuristic fills the knapsack defined by (5.5) at least half
full.

5.2 1 / min delays, 2 n;,ny-chains / Cy,.,

5.2.1 No Schedule Has Makespan Greater Than Twice Op-
timal

Interestingly enough, every heuristic for 1 / min delays, 2 n,,n;-chains / Cpa.
has a worst case performance ratio of at most 2 since, as we now prove, no schedule

has makespan greater than twice the optimal makespan.

Proposition 5.8 Let o* be any optimal schedule and let o be an arbitrary schedule.
Then C.(0) < 2C.(0*).

Proof: Assuming that p, = 0, an upper bound for C.(¢) is given by

ny n2
C* = E(pn,.‘ + 4+ Z(Pz.j + 12,5)

=1 j=1

98

and a lower bound for C,(0*) is given by

C'= max{) (p1; + l1,), Z(Pz,j +125)}

=l 1=1

Now,
C.(o) < Cce <C“

Co) SCqey ~ et =% °

5.2.2 Polynomially Solvable Special Cases

As mentioned in Chapter 4, the number of feasible sequences for 1 / min delays,

n; + n,
n ’
Suppose that n, < ¢, where c is a fixed constant. Then

(n1+n2) < (n1+C)=(m+°)("1+c‘1)‘“("‘+1) = O(n?).

ny ny c!

2 ny,ng-chains / Crnga; is

Since determining the schedule associated with a given sequence can be accomplished
in time O(n; 4 n2) = O(ny + ¢) = O(n,1), then complete enumeration requires time
O(n§*'). Thus, the subset of instances of 1 / min delays, 2 n;,n;-chains / Cpz
with n; < c can be solved in polynomial time.

Recall from Chapter 4 that 1 / min delays, 2 ny, ny-chains / Cpez can be solved by
dynamic programming in time O(nyn3(1 + (L2 — ;1]*)), where L; = max;=1, ., l2;
and p; = mini=2,..n, ;- As an immediate consequence, the subset of instances
with L; — p1 bounded by a polynomial in n; and n; can be solved in polynomial
time. Reversing the roles of the 1-jobs and the 2-jobs, we can solve 1 / min delays,
2 ny,ny-chains / Cpos in time O(n3ng(1 + [Ly — pa]*)), where L; = max;=y,. n, L1
and p; = min,=3, a, p2,;. Thus, the subset of instances with L, — p; bounded by a

polynomial in n; and n; can also be solved in polynomial time.

99

We now show that, assuming n; > n;, the subset of instances of 1 / min delays,
2 ny,ny-chains / Cpaz with Ly < p; and Ly < p; can be solved in time O(n, ign,).
The significance of L; < py (L1 < pp) is that if a 2-job (1-job) is sequenced immedi-
ately after a 1-job (2-job), then the corresponding active schedule includes no idle
time between the end of the 1-job (2-job) and the beginning of the 1-job (2-job).

As described in Chapter 4, we might imagine there are n; + 1 bins, one before
job Ji,1, one between jobs Jy; and Jyi4q for ¢ = 1,...,n; — 1, and one between
jobs Jyn, and x, into which the 2-jobs are placed (see Figure 5.9). Let I, the size
of bin ¢, be the amount of idle time immediately preceding job J;; in any schedule
corresponding to a sequence with bin i empty for i = 1,...,n,. Let I ., (I} .,) be
the amount of idle time immediately preceding job * in any schedule corresponding

to a sequence with bin n, + 1 empty (not empty). Then
I, =0,
L=l fori=2,...,n,
1l T L n,, and

+ o
Iﬂl +1 = Izvnz e

Let o be the schedule corresponding to the sequence with bin ny + 1 empty and
jobs J21,. .., J2,n, placed, one each, in the n, largest of bins 1,...,n;. Let 02 be the
schedule corresponding to the sequence with job J;,,, placed in bin n; + 1 and jobs
J2,1- - -y Jany-1 placed, one each, in the n, — 1 largest of bins 1,...,n;. We now
prove that this special case is solved by selecting between o' and ¢? the schedule

with smaller makespan.

Proposition 5.7 Let 0* = argmin,=q 02{C.(0)}. Then, schedule o* is optimal
for the special case of 1 / min delays, 2 ny,nz-chains / Cpaz with Ly < py and
Ly £pa

Proof: If bin n, + 1 is empty, then at least n; — n, of bins 1,...,n; must also be

empty. Thus, the total idle time in any schedule corresponding to a sequence with

100

Bin 1 Jia Bin 2 Jiz ot Binn, | J, |Binni+1} «

Figure 5.9: Bins into which the 2-jobs are placed.

bin n; + 1 empty is at least I, where I' equals I, ,; plus the sum of the n; - n,
smallest of I;,..., I,,. Since schedule 0! has total idle time equal to I’, then o has
minimum makespan among schedules corresponding to sequences with bin n; + 1
empty.

On the other hand, if bin n; + 1 is not empty, then at least n; — (ny — 1) =
n; —n2 + 1 of bins 1,...,n; must be empty. Thus, the total idle time in any
schedule corresponding to a sequence with bin n; + 1 not empty is at least I”, where
I" equals I} ,; plus the sum of the ny —ny+1 smallest of I,. .., I,. Since schedule
o2 has total idle time equal to I, then ¢? has minimum makespan among schedules
corresponding to sequences with bin n; + 1 not empty.

In the sequence associated with any schedule, bin n, + 1 is either empty or not
empty. Thus, if I’ < I”, then schedule ¢! is optimal and otherwise, schedule o2 is

optimal. O

Sorting I,..., I,, in nondecreasing order and identifying the n, largest of these
values requires time O(n; Ign;). Since computing the start time of each job in the
schedule corresponding to a given sequence can be accomplished in time O(n; + n,),

then this special case can be solved in time O(n, 1gn,) overall.

5.2.3 Disjunctive Graph Representation

In this subsection, we present a technique for representing instances of 1 / min
delays, 2 ny,n;-chains / Cyq, which is adapted from the disjunctive graph of Roy

and Sussmann as described in [18]. We associate with each instance a weighted,

101

mixed graph H = (V, A, E). The vertex set V = V; U V;, where
Vi={ve}U{v];,i=1,....n}U{e};,i=1,...,ny}
and
Vi={vi,i=1...,m}U{vy;, j=1,...,n2}.

Vertex vg corresponds to a dummy initial job with zero processing requirement. The
remaining vertices in V; correspond to jobs in J. The vertices in V, correspond to
the minimum delays. We assign to each vertex a weight equal to the duration of the

corresponding job or delay. Arc set A = A; U A, U A3U Ay, where
Ay = {< v, v}, >, < vo,05; >},
Ar={<vi,vl; > i=1...,m}Uu{<vi,vl;;, > i=1,...,n -1},
As={<v};v} ;> 7=1,...,n}U{< v}, 05,1 > j=1,...,n -1},
and
Ag={<v],,,* > <v),,*>}.

These arcs represent precedence constraints among jobs and minimum delays. The

edge set E is given by
E= {(vf,va,j)’ 1= 1,...,11.1,] = 17*"»”2}'

These edges represent machine capacity constraints. Figure 5.11 shows the weighted,
mixed graph H associated with the instance shown in Figure 5.10.

The edges in £ join vertices corresponding to pairs of jobs, either one of which
is allowed to precede the other. By orienting an edge in one way or the other, we
specify the relative order of the pair of jobs corresponding to that edge’s endpoints.
By orienting all edges such that the resultant directed graph, H, is acyclic, we specify
a feasible sequence. The completion time of job J. € J in the schedule associated

with this sequence is equal to the weight of the maximum weight path in H from

102

Figure 5.11: Graph H associated with instance of 1 / min delays, 2 ny, ns-chains /
Cmoz-

103

ve to the vertex corresponding to J.. By weight of a path, we mean the sum of the
vertex weights over all vertices in the path. Thus, 1 / min delays, 2 n, n;-chains /
Cumaz can be thought of as the problem of finding an orientation of the edges in £
such that the resultant directed graph is acyclic with maximum weight path from
vo to vertex * of minimum weight among all such acyclic directed graphs.

Using the weighted, mixed graph, we can solve 1 / min delays, 2 n;, nz-chains /
Cinez by branch-and-bound as follows. For each problem in which not all edges of
the corresponding graph have been oriented, we select an unoriented edge (vf;, v ;)
for some ¢ € {1,...,n,} and j € {1,...,n3} and we consider two subproblems, one
with (v}, v} ;) oriented from v}, to v} ; and the other with (v{;, v} ;) oriented from
v} ; to v} ;. For each subproblem, we compute a lower bound for the makespan of any
schedule which could be gotten by orienting the remaining =dges of the corresponding
graph. We eliminate a subproblem from further consideration if this lower bound
exceeds a known upper bound for the optimnal makespan. One such lower bound is
given by the weight of a maximum weight directed path from vy to vertex * in the
partially oriented graph.

If we orient edge (v} ;, v} ;) from v, to v} ;, then, in order to ensure that the graph
remaiﬁs acyclic, we must orient edge (v} ;,v5 ,,) from v{; to v}, form = j+1,...,n,.
Observe, though, that the weight of a maximum weight path from v to v}, which
includes edge (v};,v};) and arcs < v§;,v}; >, < v};,v5,4; >, < V541,00 >

veery < Vg 1,V . > I8 at least

m-1
Z (pZ,r + 12,1')

r=j

more than the weight of a maximum weight path from vo to v}, which includes
edge (v];, v}). In other words, no maximum weight path from vg to v}, and
hence no maximum weight path from vp to vertex * includes (v{;,vf,). Thus,

having oriented edge (v}, v} ;) from vf; to v} ;, we can eliminate edge (v} ;, v} ,,) for

104

m = j +1,...,n;. By the same token, if we orient edge (v};,v},) from ¢} to v},
then we can eliminate edge (v}, v} ;) for c = i + 1,...,n;. By eliminating those
edges with orientations implied by transitivity, we ensure that the number of arcs
and oriented edges and hence the amount of time required to compute the weight
of a maximum weight path from vg to vertex * is O(n; + nz).

The weighted, mixed graph can be generalized in an obvious manner to represent
1 / min delays, k ny,...,ni-chains / C,,,,. Our success in using this graph to solve
1 / min delays, k n,,...,ni-chains / Cpqer by branch-and-bound depends on our
ability to generate quality lower bounds for subproblem makespan and upper bounds

for the optimal makespan.

5.2.4 Lower Bounds

We now present three lower bounds for the optimal makespan of 1 / min delays,
2 ny,ng-chains / Cyna, under the assumption p, = 0. Let o* be an optimal schedule.

Two obvious lower bounds for Crez(0*) = C.(0*) are given by

Y pe

Je€J

and
ny na
max{) (pri + hs), D_(p2j + haj)}-
=1

i=1

We refer to these as the processing requirement and longest chain bounds, respec-
tively. The class we now describe includes lower bounds for C.(o*) which are as
large as either of these bounds. The following discussion is adapted from Carlier [5].

Obviously, job J;; can start no earlier than time
i-1
T = Z(pl.t +1i4)
t=1

105

for eacht = 1,...,n,. Moreover, at least

ni
qui =hi+ Y (pre+he)

t=i41

time units must elapse between the end of job Ji; and the beginning of job * for
it =1,...,n;. We refer to ry; and ¢, as the release date and tail, respectively, of
job Jyifori=1,...,n;. In asimilar manner, we can define r; ; and ¢, ;, the release
date and tail of job J;; for j = 1,...,n;. The following proposition defines a class

of lower bounds for C.(0*) in terms of these release dates and tails.

Proposition 5.8 For all S C J\ {x},

h(S) = minr. + Jgsp, + ming. < C.(07).

Proof: Let §CJ\ {»}, Jn = argminy,es{o*(e)}, and J, = argmaz .es{o°(e)}.
Then

o*(m)>r,, > minr
(m) 2 ™=Jes ©

Cu(at) - U.(m) Z E Pes

Je€S
and
" - - " t 3 > u> M .
Cu(0") = Cu(0®) 2 ¢ 2 ming.

Summing these three inequalities gives the result. O

Note that

h(‘] \ {*}) = Z Pe + min{Ql,nn‘h.ng}

JeEJ

= z De + min{ll,ma 12.'12}
Je€J

\Y

> Pe-

Je€J

106

Furthermore,

maz{h({Ji1}), h({J21})} = max{i(?l,.‘ + 1), i(m.j +13,)}.

1=]

Thus, the class of lower bounds for C.{0*) defined by Proposition 5.8 includes bounds
as large as either the processing requirement or the longest chain bound.
Determining the largest of the lower bounds defined by Proposition 5.8 seem-
ingly involves evaluating A(S) for each S C J\ {*}. As the following proposition
reveals, maxsc,\(«}{ {S)} can in fact be determined with relative ease. The Schrage
algorithm involves scheduling next the available job with largest tail, with ties bro-
ken arbitrarily. The preemptive version of this algorithm also involves stopping the

processing of a job if another job with larger tail becomes available.

Proposition 5.9 The makespan of the schedule generated using the preemptive ver-

sion of the Schrage algorithm equals maxsc (.3 {h(S)}.

Proof: We only sketch the proof here. For complete details, see the proof of
Proposition 3 in Carlier [5).

Let V be the makespan of the schedule generated using the preemptive version of
the Schrage algorithm. That V > maxsca\ (.} {#(S5)} follows since, for all § C J\ {+},
h(S) is a lower bound for the makespan of any preemptive schedule. Showing
that V < maxscng.3{h(S)} involves exhibiting a subset So C J \ {*} such that
h(So) = V. Such a subset Sy can be identified by applying the Schrage algorithm to
a modified problem instance obtained by replacing each job Jy; (J2;) by p1i (p2.j)
new jobs, each with a unit processing requirement, a release date of r,; (r;,;), and a
tail of g1, (¢2,;) fori = 1,...,n; (j = 1,...,n2) and then invoking the main theorem

of [5]. O

We now demonstrate the three lower bounds described in this subsection using

the instance shown in Figure 5.10. The processing requirement and longest chain

107

Table 5.1: Release dates, processing requirements, and tails.

€ Te Pe | Qe

I,bj0t1]14

12131319

131912 4

211011111

2213151 4
a2 J1a D2z Jia EJ
0 1 2 3 6 11 137777

Figure 5.12: Schedule generated using the preemptive version of the Schrage algo-

rithm.

bounds for this instance are 12 and 15, respectively. The schedule shown in Fig-
ure 5.12 is the result of applying the preemptive version of the Schrage algorithm
using the data given in Table 5.1. This schedule has a makespan of 17. Observe
that

h({h2 D13, J22}) =3+10+4 =17.

Observe also that, although in general, the schedule generated using the preemp-
tive version of the Schrage algorithm includes preemptions, the schedule shown in

Figure 5.12 is nonpreemptive, feasible, and hence optimal.

5.2.5 Bicriterion Heuristic

In Section 4.1, we defined f; for eacht = 1,...,n; +1 and each feasible combina-
tion of z,,...,24_1, and z; to be the difference between the completion times of jobs

J1: and Jy ;.1 in the schedule associated with the sequence obtained by appending

108

jobs Jp 5141y - - -y J2,8,_y42z.> and Jy, in that order, to the end of the sequence
o= o= Jog = o oy = Ty 2 a1 = o Jar 4z, — 12

— e = Jigg — Jz.z.+»--x(-z+1 A J2,8|—1 - Jii-1,

where s,y = iz} z; € {0,1,...,n,} and 2, € {0,1,...,n; — s¢.1}. In this sub-
section, we give formulas for f}, a lower bound, and f2, an upper bound for f; n
terms of 8;.; and z; for each t == 1,...,n; + 1 and each feasible combination of
Z1,...,&4-1, and z,. These formulas depend on zy,...,z,.; only through the role
these variables play in determinirg s;-,. Using these lower and upper bounds, we
approximate 1 / min delays, 2 n;,n,-chains / Cpa, by a bicriterion problem.

In the event f; can be expressed in terms of only s;_; and z,, we can let f} =
f2 = fi. Thus, for eacht = 1,...,n, and each feasible combination of z,...,z_1,

and z, with z; = 0, we can let

ftl = f¢2 = Il,t-l + D1,

For each t = 1,...,n; and each feasible combination of z;,...,z¢.1, and z, with

z. € {1,...,n2 — 8¢_1}, ft is nondecreasing in

= {:2..,-, - (wt-—l +Pl,t—l)}+-

Since
0 S .9] S {12,ag_1 '—p1,!—1}+9

then, for this case, we can let
ftl = PLP"_‘+1‘,‘_1+::‘ + Ul,l—l - PLPIg-‘+1,l._1+t(]+ + P
and

ftz = {12,13.-1 - P],t-.1}+ + PLPI:-1+1.O:_1+::0
+ [ll-‘—l - ({I?.lc-l - Pl.t-l}+ + PLP':—: +1.lc—1+ta)]+ + D

109

By a similar argument, we can justify letting

Sorer = lin, + 10

and
f3.+1 = max{ll,ﬂnﬂﬁmz mn] } + P

for each feasible combination of z1,...,2,,, and z.,4; such that Smy = 1L, T, =y

and letting
n1+l = PLP:.., +1,n3 + max{[ll.m ha PLP‘nl +l.ﬂg}+’ 12,n;} + P
and

31+l = {12--’111 - Piny }+ + PLP'n‘ +1,n2
+ max{[l 5, — ({Ihn, - P)T+ PLP'\\)‘{'L"-:), Lan,} + pa

for each feasible combination of z,,. «+yZpy, and T 4y such that s, = Yz €
{0,1,...,7!2 - 1}

Let z),...,2}, ,, be any solution of
$l+"'+xn1+l=ﬂ2, :c,-EZ{,*forj:l,...,nl, (56)

let s5 = 0, and let s} = 3!, z; for t = 1,...,ny. Then, T2} fl(se_1,z¢) is
a lower bound and Y1} J&(8¢-1,2;) is an upper bound for the makespan of the
schedule associated with the sequence defined by «/,. .., z,, +1- This schedule likely
has small makespan if T3} f}(s}_,, i) is small and T+ f2(s!_,, z}) is not too
large. A solution zi,...,z/, ., of (5.6) is Pareto optimal with respect to minimizing
both T"rif! f1 and 1713 f2 if there exists no other solution iy 2y oy of (5.6)
with

ni41 ni141

Z f¢(3¢ I < Z fi(sy_ 1 Zt)

and
ny+1 ny+1
Z ft Se_ 1!31) < E f2 (St—1> 1),
t=1 t=1

110

where at least one of these inequalities is strict. Schedules with small makespans
are likely the schedules associated with feasible sequences defined by Parete optimal

solutions of

ny+1 ny+1

min‘ {Z le(st—l’xt)'» Z ff(.fh_l,z:,)} (5.7)

$ = S +zfort=1,...,n1+1, 8.1 =0,1,...,n,, and
a:,::O,l,...,ng--s._l

80=0.

One interpretation of problem (5.7) is as a bicriterion shortest path problem in a
certain network. The network has nodes (¢,3;) fort =0 and s =0,fort =1,...,n;
and 8; = 0,1,...,n2, and for t = n; + 1 and s,,41 = n,. In addition, the network
has an arc from node (t —1, 3;-1) to node (¢, 3,y + ;) with weights f}(s,_1,z,) and
fi(st—1,z¢) fort=1,...,ny+1and 2: =0,1,...,ny — 3,_. This network is shown
in Figure 5.13. Solutions z,...,z,,4; of (5.7) correspond to patus from node (0, 0)
to node (ny + 1,n2) in the network.

Unfortunately, the number of Pareto optimal paths in a network can be expo-
nential in the number of nodes in the network (see Hansen [12]). Thus, the problem
of identifying all Pareto optimal paths is in general intractable. In the absence of a
proof that the number of Pareto optimal paths for the network of Figure 5.13 with
costs f} and f? is bounded by a polynomial in n; and ng, we suggest the following
alternatives. The first alternative is to use a surrogate criterion for min Tj21" f2.
Note that every path from node (0,0) to node (n; + 1,n;) includes exactly n; + 1
arcs. Thus, instead of simultaneously minimizing 727! f} and 02! f2, we could
minimize T} f! and maxe=1,. 41 f¢- Hansen [12] presents a simple transfor-
mation from “MINSUM-MINMAX” to “MINSUM-MAXMIN” and an algorithm
for “MINSUM-MAXMIN,” which, for the network of Figure 5.13, requires time
O(n3nilgnin;). A second, more appealing alternative is to use the fully polynomial
approximation scheme (see page 92) for “MINSUM-MINSUM?” described in [12].

111

M
ny N ny+i.ny
1 2
t—Loarsy [1(8e-1,24), f2(8e-1,24) @

Figure 5.13: Bicriterion shortest path network.

OF

This scheme, which, for the network of Figure 5.13, requires time O(ﬂzﬁ Ig ﬂfi),
involves scaling the f2’s and then generating approximate Pareto optimal paths.
The number of paths produced using the first (second) alternative is bounded
by a polynomial in n, and n; (n, ns, and %) Since evaluating the actual makespan
of the schedule associated with the feasible sequence defined by any path from
node (0,0) to node (n; + 1,nz) can be accomplished in time O(n; + n;), then
producing a set of ‘nearly’ Pareto optimal paths using the first (second) alternative
and selecting from among these paths a path that has associated schedule with
minimum makespan can be accomplished in time bounded by a polynomial in n,

and n; (ny, ng, and 1).

112

CHAPTER 6

CONCLUSIONS

6.1 Summary

In this dissertation, we have investigated one-machine scheduling problems sub-
ject to generalized precedence constraints. These constraints and minimum delay
precedence constraints in particular can arise in the scheduling of athletic competi-
tions. The literature directly related to generalized precedence constrained schedul-
ing (GPCS) is seemingly scant, limited mostly to special cases and related con-
straints. To our knowledge, this dissertation contains the first explicit identification
of generalized precedence constraints as we have defined them and represents the
first systematic treatment of GPCS.

As we have seen, all but the simplest of GPCS problems are NP-hard. Among
problems for which the precedence relation is k 1-chains, several, including minimiz-
ing makespan subject to minimum delays, subject to maximum delays, or subject
to minimum or maximum delays'but not both, and minimizing total completion
time subject to minimum delays, can be solved in polynomial time. Even among
these problems with the simplest of precedence relations, though, are hard prob-
lems, including minimizing makespan subject to minimum and maximum delays,
minimizing total weighted completion time subject to minimum delays, and min-
imizing total completion time subject to maximum delays, the first and third of

which are NP-hard in the strong sense.

113

The effect on minimum makespan problems of allowing even slightly more com-
plex precedence relations is to make hard those problems which were heretofore
solvable in polynomial time. In particular, both the problem subject to minimum
delays and the problem subject to maximum delays, and hence the problem subject
to minimum or maximum delays but not both, are NP-hard when we allow one of
the k chains to include two jobs. Each of these problems is NP-hard in the strong
sense when we allow one of the k chains to include any number of jobs. In addition,
the problem subject to minimum delays and hence the problem subject to minimum
or maximum delays but not both, is NP-hard in the strong sense when we allow each
of the k chains to include two jobs.

In contrast to k 1-chains, a “shallow™ precedence relation, is 2 n;, n;-chains, a
“deep” precedence relation. Our results for minimum makespan problems for which
the precedence relation is 2 n;, n,-chains were somewhat inconclusive. The problem
subject to minimum delays can be solved in pseudo-polynomial time. We were
unable to further classify this problem with respect to computational complexity. On
the other hand, the problem subject to maximum delays can be solved in polynomial
time.

Just because a particular GPCS problem is NP-hard does not mean we cannot
solve that problem with some degree of success. For example, in the case of 1 / min
delays, k 2,1,...,1-chains / Cpsz, We can easily identify a schedule with makespan
no more than twice the optimal makespan from the class of “insertion” schedules.
The special case of 1 / min delays, k 2,1,...,1-chains / Cppaz with lp =--- =, =0
can be formulated as two subset sum problems. Consequently, this special case can
be solved in pseudo-polynomial time by dynamic programming. Using Lawler’s fully
polynomial approximation scheme for subset sum, we can produce a schedule for
an even more special case with makespan at most 3 + A for any A € (0, 4) in time
bounded by a polynomial in the length of the problem instance and in }.

While we do not know whether 1 / min delays, 2 ny, ny-chains / Cp,; is NP-hard

or not, we do know that several special cases, including the one in which the differ-

114

ence between the largest minimum delay in one chain and the smallest processing
requirement in the other chain is bounded by a polynomial in n; and n,, can be
solved in polynomial time. As we have seen, 1 / min delays, 2 ny,n;-chains ; Cp,;
possesses the curious property that no schedule has makespan greater than twice the
optimal makespan. The optimal makespan is bounded from below by the processing
require.nent and the longest chain bounds as well as by the makespan of the schedule
generated using the preemptive version of the Schrage algorithm. We can solve 1
/ min delays, 2 ny,nz-chains / Cpq, by branch-and-bound in conjunction with the
disjunctive graph representation. Alternatively, we can generate an approximate
solution using the bicriterion heuristic. Unfortunately, the former option is likely to
be computationally intractable and the latter option provides solutions of unknown

quality.

6.2 Suggestions for Future Research

Our work falls short of suggesting a general methodology for dealing with gen-
eralized precedence constraints. Instead, our results point to the importance of
exploiting problem-specific structures, the likelihood that solving GPCS problems
will be, in general, computationally expensive, and the need for provably effective
heuristic solution techniques.

Our treatment of GPCS problems has been mostly combinatorial in nature.
Other approaches such as a polyhedral approach might well prove to be fruitful. As
an initial step in a polyhedral treatment of GPCS, we suggest finding the convex
hull of the active schedules for 1 / min delays, k 1-chains / Cpq;-

Whether or not there exist pseudo-polynomial time algorithms for
1. 1 / min delays, k 2,1,...,1-chains / Cpnaq,
2. 1 / max delays, k£ 2,1,...,1-chains / Cpaz,

3. 1 / max delays, k 2-chains / C,,q., or

115

4. 1 / min delays, k 1-chains / ¥ w;C;

all of which are NP-hard, are open questions. We showed in Section 5.1.3 that
the NP-hard special case of 1 / min delays, k 2,1,...,1-chains / Cp., with {; =
-+« = I = 0 is solvable in pseudo-polynomial time. We hypothesize that the general
problem is not solvable in pseudo-polynomial time.

For us, the most intriguing open question concerns the computational complex-
ity of 1 / min delays, 2 ny,ng-chains / Cpaz. Wi hypothesize that, due to the
sequence-specific nature of the active schedules, this problem cannot be solved in
polynomial time and is in fact NP-hard. As an initial step in proving or disproving
this hypothesis, we suggest considering the computational complexity of 1 / min

delays, k n;,...,ng-chains / Cpy, for £ = 3.

116

BIBLIOGRAPHY

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman (1974). The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA.

{2] R. Andreu, A. Corominas (1989). SUCCCES92: A DSS for Scheduling the
Olympic Games (sic). Interfaces 19, 1-12.

[3] Baker (1974). Introduction to Sequencing and Scheduling. Wiley, New York.

[4] R.E. Bellman (1957). Dynaemic Programming. Princeton University Press,

Princeton, NJ.

[5] J. Carlier (1982). The one-machine sequencing problem. Fur. Journal of OR
11, 42-47.

[6] P. Chretienne (1989). A polynomial algorithm to optimally schedule tasks on a
virtual distributed system under tree-like precedence constraints. Fur. Journal

of OR 43, 225-230.

(7] R.W. Conway, W.L. Maxwell and L.W. Miller (1967). Theory of Scheduling.
Addison-Wesley, Reading, MA.

[8] R. Duke (1987). Combinatorial Methods lecture notes. Georgia Institute of
Technology (unpublished).

[9] L.F. Escudero (1988). An inexact algorithm for the sequential ordering problem.
Eur. Journal of OR 87, 236-253.

[10] M.R. Garey, D.S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H. Freeman and Company, New York.

117

[11]

[12]

13]

[14]

[15]

[16]

17]

(18]

(19]

[20]

M.R. Garey, D.S. Johnson, R. Sethi (1976). The Complexity of Flowshop and
Jobshop Scheduling. Math of OR 1, 117-129.

P. Hansen (1980). Bicriterion path problems. G. Fandel, T. Gal (eds.) Lecture
Notes in Economics and Mathematical Systems 177. Springer, Heidelberg, 109-
127.

J.A. Hoogeveen, S.L. van de Velde (1990). Polynomial-time algorithms for
single-machine bicriteria scheduling. Report BS-R9008, Centre for Mathematics

and Computer Science, Amsterdam, The Netherlands.

D.S. Johnson (1983). The NP-completeness column: an ongoing guide. Journal
of Algorithms 4, 189-203.

R.M. Karp (1972). Reducibility among combinatorial problems. R.E. Miller,
J.W. Thatcher (eds.) Complezity of Computer Computations. Plenum Press,
New York, 85-103.

E.L. Lawler (1978). Sequencing Problems with Series Parallel Precedence Con-

straints. Unpublished manuscript.

E.L. Lawler (1979). Fast Approximation Algorithms for Knapsack Problems.
Math of OR 4, 339-356.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys {1989). Sequenc-
ing and Scheduling: Algorithms and Complezity. Report BS-R8909, Centre for

Mathematics and Computer Science, Amsterdam, The Netherlands.

G.L. Nemhauser, L.A. Wolsey (1988). Integer and Combinatorial Optimization.
Wiley, New York.

A H.G. Rinnooy Kan (1976). Machine Scheduling Problems: Classification,
Complezity and Computations. Nijhoff, The Hague.

118

[21] R. Shapiro (1980). Scheduling Coupled Tasks. Naval Res. Logist. Quart. 27,
489-498.

[22] L.E. Shirland (1983). Computerized dressage scheduling. Interfaces 13, 75-81.

{23] W.E. Smith (1956). Various optimizers for single-stage production. Naval Res.
Logist. Quart. 3, 59-66.

[24] C.A. Tovey {1992). private communication.

[25] L N. Van Wassenhove, L.F. Gelders (1980). Solving a bicriterion scheduling
problem. Eur. Journal of OR 4§, 42-48.

119

VITA

Captain Erick Douglas Wikum was born September 16, 1965 in Edgerton, Wis-
consin. He spent his childhood together with his parents and three sisters in East
Grand Forks, Minnesota and Plymouth, Massachusetts, as well as in Menomonie,
Wisconsin, where he attended high school. Erick received his Bachelor’s Degree in
Mathematics and Operations Research together with a commission as a 2nd Lieu-
tenant ‘u the U.S. Air Force from the U.S. Air Force Academy in June of 1988.
He earned a Masters’ Degree in Operations Research from the Georgia Institute of
Technology in December of 1989. On April 6, 1991, Erick married Joanne Elizabeth
Crane. Erick presently serves as an operations research analyst in the Air Force and

hopes to atteud law school in the near future.

120

